
Analysis of Algorithms Strongly Connected Components
CS6820 Fall 2022 Wednesday, August 24, 2022

Here is a linear-time algorithm based on DFS for finding the strongly connected compo-
nents (strong components) of a given directed graph G = (V,E). This algorithm is due to
Tarjan [1].

We start by constructing the DFS forest of G, calculating preorder numbers and a des-
ignation of each edge as a tree, back, forward, or cross edge. For u, v ∈ V , define u ≡ v if u
and v are in the same strong component; that is, if there is a directed cycle of G containing
both u and v.

Let us say that u is to the left of v and v is to the right of u if neither u nor v is an
ancestor of the other and u is visited before v in the depth-first search order. Relative to a
given node u, the nodes can be partitioned into four disjoint regions:

(A) proper ancestors of u;1

(B) nodes to the left of u;

(C) nodes to the right of u;

(D) descendants of u.1

These are illustrated in Fig. 1. These regions are distinguished by the preorder and postorder
numbers of their elements relative to u, as given by the following table:

v in region pre(v) ? pre(u) post(v) ? post(u)

(A) < >
(B) < <
(C) > >
(D) ≥ ≤

Let [u] denote the strong component of u. Let us call a node u canonical if it has the
minimum preorder number among all elements of [u].

Lemma 1 A node u is canonical iff all elements of [u] lie in the subtree of the DFS forest
rooted at u.

Proof. Suppose u is canonical. Looking at Fig. 1, [u] does not intersect regions (A) or
(B), as the elements of these regions all have smaller preorder numbers than u. Thus [u]
is a subset of the union of regions (C) and (D). But there is no cycle containing nodes of

1We consider “ancestor” and “descendant” to be reflexive relations; thus a node is both and ancestor and
a descendant of itself. If we mean otherwise, we will say “proper ancestor” and “proper descendant.”
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Figure 1: A DFS tree.

both (C) and (D), because there is no edge from (D) to (C): any such edge would have to
increase both postorder and preorder numbers, but none of the four types of edges do this.
The converse is obvious.

Using this lemma, we can give a linear-time algorithm for finding the strong components.
We traverse the DFS tree again in depth-first order, pruning strong components as we find
them. To check whether a node u is a canonical element, we ask whether there is an edge
exiting the region (D). We claim that if there is no such edge, then the subtree rooted at u
is exactly [u], and u is its canonical element; otherwise, u is not canonical. In the former
case, we delete the subtree from the graph and all its incident edges.

To prove the claim, note that the checks are done and subtrees deleted in postorder.
Thus at the time we do the check at u, all strong components whose canonical elements have
smaller postorder numbers have already been deleted. These were subtrees of regions (B)
and (D).

If there is an edge exiting the region (D), say to a node w, then it must be either a back
edge to region (A) or cross edge to region (B). If the former, then u is not canonical, as w is
in [u] and is a proper ancestor of u. If the latter, then the canonical element of [w] must
lie in region (A); if it lay in (B), then [w] would already have been deleted. In that case as
well, [u] contains a proper ancestor of u, thus u is not canonical. Otherwise, no edge from
region (D) leaves region (D), thus u is canonical. Moreover, every element of (D) is in [u],
as all other strong components contained in (D) have already been deleted.

The algorithm is linear time. Whether there exists an edge exiting the region (D) can
be determined recursively during the DFS traversal by calculating the minimum preorder
number accessible from some descendant of u via a single edge and comparing the preorder



number to u. The algorithm as we have given it involves two DFS passes over the graph, the
first to calculate the preorder and postorder numbers, and the second to find and prune the
strong components ([1] does both in one pass). The pruning takes linear time in all, because
each node and edge is deleted only once.
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