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3 Steiner Tree and TSP

In this chapter, we will present constant factor algorithms for two fundamen-
tal problems, metric Steiner tree and metric TSP. The reasons for considering
the metric case of these problems are quite different. For Steiner tree, this is
the core of the problem — the rest of the problem reduces to this case. For
TSP, without this restriction, the problem admits no approximation factor,
assuming P # NP. The algorithms, and their analyses, are similar in spirit,
which is the reason for presenting these problems together.

3.1 Metric Steiner tree

The Steiner tree problem was defined by Gauss in a letter he wrote to Schu-
macher (reproduced on the cover of this book). Today, this problem occupies
a central place in the field of approximation algorithms. The problem has a
wide range of applications, all the way from finding minimum length inter-
connection of terminals in VLSI design to constructing phylogeny trees in
computational biology. This problem and its generalizations will be studied
extensively in this book, see Chapters 22 and 23.

Problem 3.1 (Steiner tree) Given an undirected graph G = (V, E) with
nonnegative edge costs and whose vertices are partitioned into two sets, re-
quired and Steiner, find a minimum cost tree in G that contains all the re-
quired vertices and any subset of the Steiner vertices.

We will first show that the core of this problem lies in its restriction to
instances in which the edge costs satisfy the triangle inequality, i.e., G 1s a
complete undirected graph, and for any three vertices u, v, and w, cost(u,v) <
cost(u,w) + cost(v,w). Let us call this restriction the metric Steiner tree
problem.

Theorem 3.2 There is an approzimation factor preserving reduction from
the Steiner tree problem to the metric Steiner tree problem.

Proof: We will transform, in polynomial time, an instance I of the Steiner
tree problem, consisting of graph G = (V, E), to an instance [ " of the metric
Steiner tree problem as follows. Let G’ be the complete undirected graph on
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vertex set V. Define the cost of edge (u,v) in G’ to be the cost of a shortest
u—v path in G. G’ is called the metric closure of . The partition of V into
required and Steiner vertices in I’ is the same as in [.

For any edge (u,v) € E, its cost in &’ is no more than 1ts cost in G.
T'herefore, the cost of an optimal solution in I’ does not exceed the cost of
an optimal solution in 1.

Next, given a Steiner tree T” in [’ , we will show how to obtain, in poly-
nomial time, a Steiner tree T in I of at most the same cost. The cost of an
edge (u,v) in G’ corresponds to the cost of a path in G. Replace each edge
of 7" by the corresponding path to obtain a subgraph of G. Clearly, in this
subgraph, all the required vertices are connected. However, this subgraph
may, in general, contain cycles. If so, remove edges to obtain tree T. This
completes the approximation factor preserving reduction.

As a consequence of Theorem 3.2, any approximation factor established
for the metric Steiner tree problem carries over to the entire Steiner tree
problem.

3.1.1 MST-based algorithm

Let R denote the set of required vertices. Clearly, a minimum spanning tree
(MST) on R is a feasible solution for this problem. Since the problem of
finding an MST is in P and the metric Steiner tree problem is NP-hard, we
cannot expect the MST on R to always give an optimal Steiner tree; below
1s an example in which the MST is strictly costlier.

Even so, an MST on R is not much more costly than an optimal Steiner tree:

Theorem 3.3 The cost of an MST on R is within © . OPT.

Proof: Consider a Steiner tree of cost OPT. By doubling its edges we
obtain an Eulerian graph connecting all vertices of R and, possibly, some

Steiner vertices. Find an Euler tour of this graph, for example by traversing
the edges in DFS (depth first search) order:
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The cost of this Euler tour is 2 - OPT. Next obtain a Hamiltonian cycle

on the vertices of R by traversing the Euler tour and “short-cutting” Steiner
vertices and previously visited vertices of R:

Because of triangle inequality, the shortcuts do not increase the cost of
the tour. If we delete one edge of this Hamiltonian cycle, we obtain a path
that spans R and has cost at most 2- OPT. This path is also a spanning tree
on R. Hence, the MST on R has cost at most 2 - OP'L.

Theorem 3.3 gives a straightforward factor 2 algorithm for the metric
Steiner tree problem: simply find an MST on the set of required vertices.
As in the case of set cover, the “correct” way of viewing this algorithm is
in the setting of LP-duality theory. In Chapters 22 and 23 we will see that
LP-duality provides the lower bound on which this algorithm is based and
also helps solve generalizations of this problem.

Example 3.4 For a tight example, consider a graph with n required vertices
and one Steiner vertex. An edge between the Steiner vertex and a required
vertex has cost 1, and an edge between two required vertices has cost 2 (not

all edges of cost 2 are shown below). In this graph, any MST on R has cost
2(n — 1), while OPT = n.
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3.2 Metric TSP

The following is a well-studied problem in combinatorial optimization.

Problem 3.5 (Traveling salesman problem (TSP)) Given a complete
graph with nonnegative edge costs, find a minimum cost cycle visiting every
vertex exactly once.

In its full generality, TSP cannot be approximated, assuming P £ NP.

Theorem 3.6 For any polynomial time computable function a(n), TSP can-
not be approzimated within a factor of a(n), unless P = NP.

Proof: Assume, for a contradiction, that there is a factor a(n) polynomial
time approximation algorithm, A, for the general TSP problem. We will show
that A can be used for deciding the Hamiltonian cycle problem (which is NP-
hard) in polynomial time, thus implying P = NP.

T'he central idea is a reduction from the Hamiltonian cycle problem to
I'SP, that transforms a graph G on n vertices to an edge-weighted complete
graph G’ on n vertices such that

o if G has a Hamiltonian cycle, then the cost of an optimal TSP tour in G
is n, and

e if G does not have a Hamiltonian cycle, then an optimal TSP tour in G
is of cost > a(n) - n.

Observe that when run on graph G/, algorithm 4 must return a solution of
cost < a(n)-n in the first case, and a solution of cost > a(n)-n in the second
case. Thus, it can be used for deciding whether G contains a Hamiltonian
cycle.

T'he reduction is simple. Assign a weight of 1 to edges of G, and a weight
of a(n) - n to nonedges, to obtain G’. Now, if G has a Hamiltonian cycle,
then the corresponding tour in G’ has cost n. On the other hand, if G has
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no Hamiltonian cycle, any tour in G must use an edge ot cost a(n) - n, and
therefore has cost > a(n) - n.

Notice that in order to obtain such a strong nonapproximability result,
we had to assign edge costs that violate triangle inequality. lf we restrict our-
selves to graphs in which edge costs satisfy triangle inequality, i.e., consider
metric TSP, the problem remains NP-complete, but it is no longer hard to
approximadte.

3.2.1 A simple factor 2 algorithm

We will first present a simple factor 2 algorithm. The lower bound we will
use for obtaining this factor is the cost of an MST in G. 'lhis is a lower
bound because deleting any edge from an optimal solution to 'I'5P gives us
a spanning tree of G.

Algorithm 3.7 (Metric TSP — factor 2)

1. Find an MST, T, of G.

2. Double every edge of the MST to obtain an Eulerian graph.

3. Find an Eulerian tour, 7, on this graph.

4. Output the tour that visits vertices of G in the order of their first
appearance in 7. Let C be this tour.

Notice that Step 4 is similar to the “short-cutting” step in Theorem 3.3.

Theorem 3.8 Algorithm 3.7 is a factor 2 approzimation algorithm for met-

ric TSP.

Proof: As noted above, cost(T') < OPT. Since 7 contains each edge of T
twice, cost(7) = 2 - cost(T). Because of triangle inequality, after the “short-
cutting” step, cost(C) < cost(7). Combining these inequalities we get that

costlC) £ 2 UL

Example 3.9 A tight example for this algorithm is given by a complete
sraph on n vertices with edges of cost 1 and 2. We present the graph for
n = 6 below, where thick edges have cost 1 and remaining edges have cost 2.
For arbitrary n the graph has 2n —2 edges of cost 1, with these edges forming
the union of a star and an n — 1 cycle; all remaining edges have cost 2. The
optimal TSP tour has cost n, as shown below for n = 6:
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Suppose that the MST found by the algorithm is the spanning star created
by edges of cost 1. Moreover, suppose that the Euler tour constructed in Step

3 visits vertices in order shown below for n = 6
3

2 4

Then the tour obtained after short-cutting contains n — 2 edges of cost 2 and

has a total cost of 2n — 2. Asymptotically, this is twice the cost of the optimal
TSP tour.

3.2.2 Improving the factor to 3/2

Algorithm 3.7 first finds a low cost Euler tour spanning the vertices of G, and
then short-cuts this tour to find a traveling salesman tour. Is there a cheaper
Euler tour than that found by doubling an MST? Recall that a graph has
an buler tour iff all its vertices have even degrees. Thus, we only need to be
concerned about the vertices of odd degree in the MST. Let V’ denote this
set of vertices. |V’| must be even since the sum of degrees of all vertices in the
MST is even. Now, if we add to the MST a minimum cost perfect matching
on V', every vertex will have an even degree, and we get an Eulerian graph.

With this modification, the algorithm achieves an approximation guarantee
of 3/2.

Algorithm 3.10 (Metric TSP — factor 3/2)

1. Find an MST of G, say T.
2. Compute a minimum cost perfect matching, M, on the set of
odd-degree vertices of T'. Add M to T and obtain an Eulerian graph.
. Find an Euler tour, T, of this graph.
4. Output the tour that visits vertices of G in order of their first
appearance in 7. Let C be this tour.

OV

Interestingly, the proof of this algorithm is based on a second lower bound

on OPT.

Lemma 3.11 Let V' C V| such that |V'| is even, and let M be a minimum
cost perfect matching on V'. Then, cost(M) < OPT/2.

Proof: Consider an optimal TSP tour of G, say 7. Let 7 be the tour
on V' obtained by short-cutting 7. By the triangle inequality, costir’) £
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cost(7). Now, 7’ is the union of two perfect matchings on V', each consisting
of alternate edges of 7/. Thus, the cheaper of these matchings has cost <
cost(7')/2 < OPT/2. Hence the optimal matching also has cost at most

OPT/2.

Theorem 3.12 Algorithm 3.10 achieves an approximation guarantee of 3/2
for metric TSP.

Proof: The cost of the Euler tour,
1 3
cost(T) < cost(T) + cost(M) < OPT + Q-OPT: §OPT}

where the second inequality follows by using the two lower bounds on OP'L.
Using the triangle inequality, cost(C) < cost(7T), and the theorem follows.

Example 3.13 A tight example for this algorithm is siven by the following

oraph on n vertices, with n odd:
1 - 1

[n/2]

Thick edges represent the MST found in step 1. This MS'T has only two odd
degree vertices, and by adding the edge joining them we obtain a traveling
«alesman tour of cost (n —1) +|n /2|. In contrast, the optimal tour has cost

1.

Finding a better approximation algorithm for metric TSP is currently
one of the outstanding open problems in this area. Many researchers have
conjectured that an approximation factor of 4/3 may be achievable.

3 3 Exercises

9 1 The hardness of the Steiner tree problem lies In determining the optimal
<ubset of Steiner vertices that need to be included in the tree. Show this
by proving that it this set is provided, then the optimal Steiner tree can be

computed 1n polynomial time.
Hint: Find an MST on the union of this set and the set of required vertices.

3.9 Let G = (V,E) be a graph with nonnegative edge costs. 5, the senders
and R, the recewvers, are disjoint subsets of V. The problem 1s to find a
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