V. Vazirani, Approximation algorithms, Springer, 2003.

2 Set Cover

The set cover problem plays the same role in approximation algorithms that
the maximum matching problem played in exact algorithms — as a problem
whose study led to the development of fundamental techniques for the entire
field. For our purpose this problem is particularly useful, since it offers a very
simple setting in which many of the basic algorithm design techniques can be
explained with great ease. In this chapter, we will cover two combinatorial
techniques: the fundamental greedy technique and the technique of layering.
In Part II we will explain both the basic LP-based techniques of rounding
and the primal-dual schema using this problem. Because of its generality,
the set cover problem has wide applicability, sometimes even in unexpected
ways. In this chapter we will illustrate such an application — to the shortest
superstring problem (see Chapter 7 for an improved algorithm for the latter
problem).

Among the first strategies one tries when designing an algorithm for an
optimization problem is some form of the greedy strategy. Even if this strat-
egy does not work for a specific problem, proving this via a counterexample
can provide crucial insights into the structure of the problem. Surprisingly
enough, the straightforward, simple greedy algorithm for the set cover prob-
lem is essentially the best one can hope for for this problem (see Chapter 29
for a formal proof of this statement).

Problem 2.1 (Set cover) Given a universe U of n elements, a collection
of subsets of U, S = {S1,...,Sk}, and a cost function ¢ : S — QT, find a
minimum cost subcollection of S that covers all elements of U.

Define the frequency of an element to be the number of sets it 1s 1n.
A useful parameter is the frequency of the most frequent element. Let us
denote this by f. The various approximation algorithms for set cover achieve
one of two factors: O(logn) or f. Clearly, neither dominates the other in all
instances. The special case of set cover with f = 2 1s essentially the vertex
cover problem (see Exercise 2.7), for which we gave a factor 2 approximation
algorithm in Chapter 1.

16 2 Set Cover

2.1 The greedy algorithm

The greedy strategy applies naturally to the set cover problem: iteratively
pick the most cost-effective set and remove the covered elements, until all
elements are covered. Let C be the set of elements already covered at the be-
ginning of an iteration. During this iteration, define the cost-effectiveness of a
set S to be the average cost at which it covers new elements, i.e., ¢(S)/|S — C/.
Define the price of an element to be the average cost at which it is covered.
Equivalently, when a set S is picked, we can think of its cost being distributed
equally among the new elements covered, to set their prices.

Algorithm 2.2 (Greedy set cover algorithm)

1. C+ 0
2. While C # U do

Find the set whose cost-effectiveness is smallest, say S.
Let o = |§(_523,|, I.e., the cost-effectiveness of S.

Pick .S, and for each e € S — C, set price(e) = a.
C+CUS
3. Output the picked sets.

Number the elements of U in the order in which they were covered by the
algorithm, resolving ties arbitrarily. Let e1,..., e, be this numbering.

Lemma 2.3 For each k € {1,...,n}, price(ex) < OPT/(n —k +1).

Proof: In any iteration, the leftover sets of the optimal solution can cover
the remaining elements at a cost of at most OPT. Therefore, among these
sets, there must be one having cost-effectiveness of at most OPT/|C|, where
C = U — C. In the iteration in which element e was covered, C contained
at least n — k 4 1 elements. Since e, was covered by the most cost-effective
set in this iteration, it follows that

e)<OPT< OPT
rice(e — .
P S C] L e L]

From Lemma 2.3 we immediately obtain:

Theorem 2.4 The greedy algorithm is an H, factor approximation algo-

rithm for the minimum set cover problem, where H, = 1 - % Foee ;}1-

Proof: Since the cost of each set picked is distributed among the new ele-
ments covered, the total cost of the set cover picked is equal to >, _, price(eg).
By Lemma 2.3, this is at most (1 - % + -+ }1':?) - QP'L.

	Scan.pdf
	Scan 1.pdf

