
Lecture �� Random Search Trees

In this lecture we will describe a very simple probabilistic data structure that
allows inserts� deletes� and membership tests �among other operations� in
expected logarithmic time	

These results were �rst obtained by Pugh in ���� �see ������ who called
his probabilistic data structure skip lists	 We will follow the presentation of
Aragon and Seidel �
�� whose data structure is somewhat di�erent and more
closely related to the self�adjusting trees presented in the last lecture� and
whose probabilistic analysis is particularly elegant	

���� Treaps

Consider a binary tree� not necessarily balanced� with nodes drawn from a
totally ordered set� ordered in inorder� that is� if i is in the left subtree of k
and j is in the right subtree of k� then i � k � j	 Recall that the rotate
operation discussed in the previous lecture preserves this order	

Now suppose that each element k has a unique priority p�k� drawn from
some other totally ordered set� and that the elements are ordered in heap
order according to priority� that is� an element of maximum priority in any
subtree is found at the root of that subtree	

A tree in which the data values k are ordered in inorder and the priorities
p�k� are ordered in heap order is called a treap �for tree�heap� one supposes�	

It may not be obvious at �rst that treaps always exist for every priority
assignment	 They do(Moreover� if the priorities are distinct� then the treap

��

�� Lecture �	 Random Search Trees

is unique	

Lemma �	�� Let X and Y be totally ordered sets� and let p be a function
assigning a distinct priority in Y to each element of X� Then there exists a
unique treap with nodes X and priorities p�

Proof� Let k be the unique element of X of maximum priority� this must
be the root	 Partition the remaining elements into two sets

fi � X j i � kg� fi � X j i � kg �
Inductively build the unique treaps out of these two sets and make them the
left and right subtrees of k� respectively	 �

���� Random Treaps

A random treap is a treap in which the priorities have been assigned randomly	
This is best done in practice by calling a random number generator each time
a new element m is presented for insertion into the treap to assign a random
priority to m	 Under some highly idealized but reasonable assumptions about
the random number generator�� two elements receive the same priority with
probability zero� and if all elements in the treap are sorted by priority� then
every permutation is equally likely	

When a new elementm is presented for insertion or to test membership� we
start at the root and work our way down some path in the treap� comparing
m to elements along the path to see which way to go to �nd m�s appropriate
inorder position	 If we see m on the path on the way down� we can answer
the membership query a�rmatively	 If we make it all the way down without
seeing m� we can answer the membership query negatively	

If m is to be inserted� we attach m as a new leaf in its appropriate inorder
position	 At that point we call the random number generator to assign a
random priority p�m�� which by Lemma ��	� speci�es a unique position in the
treap	 We then rotate m upward as long as its priority is greater than that
of its parent� or until m becomes the root	 At that point the tree is in heap
order with respect to the priorities and in inorder with respect to the data
values	

To delete m� we �rst �nd m by searching down from the root as described
above� then rotate m down until it is a leaf� taking care to choose the direction

�A call to the random number generator gives a uniformly distributed random real num	
ber in the interval
�� ��� and successive calls are statistically independent� i�e� if x�� � � � � xn
are the results of n successive calls� then

Pr�
�

��i�n

xi � Ai�

Y

��i�n

Pr�xi � Ai� �

Lecture �	 Random Search Trees ��

of rotation so as to maintain heap order	 For example� if the children of m are
j and k and p�j� � p�k�� then we rotate m down in the direction of j� since
the rotate operation will make j an ancestor of k	 When m becomes a leaf�
we prune it o�	

The beauty of this approach is that the position of any element in the
treap is determined once and for all at the time it is inserted� and it stays put
at that level until it is deleted� there is not a lot of restructuring going on as
with splay trees	 Moreover� as we will show below� the expected number of
rotations for an insertion or deletion is at most two	

���� Analysis

We now show that� averaged over all random priority assignments� the ex�
pected time for any insert� membership test� or delete is O�logn�	

We will do the analysis for deletes only� it is not hard to see that the
time bound for membership tests and inserts is proportionally no worse than
for deletes	 Suppose that at the moment� the treap contains n data items
�without loss of generality� say f�� �� � � � � ng�� and we wish to delete m	 The
priorities have been chosen randomly� so that if the set f�� �� � � � � ng is sorted in
decreasing order by priority to obtain a permutation � of f�� �� � � � � ng� every
� is equally likely	

In order to locate m in the treap� we follow the path from the root down
to m	 The amount of time to do this is proportional to the length of the path	
Let us calculate the expected length of this path� averaged over all possible
random permutations �	

Let

m� $ f�� �� � � � � mg
m� $ fm�m " �� � � � � ng �

Let A be the set of ancestors of m� including m itself	 The de�nitions of m�
and m� do not depend on �� but the de�nition of A does	 Let X be the
random variable

X $ length of the path from the root down to m

$ jm� � Aj" jm� � Aj
 � �

The � is subtracted because m is counted in both m� and m�	
We are interested in EX� the expected value of X� by linearity of expec�

tation� we have

EX $ Ejm� � Aj" Ejm� � Aj
 � �

By symmetry� it will su�ce to calculate Ejm� � Aj	
Note that if the elements of m� are sorted in descending order by priority�

then

�� Lecture �	 Random Search Trees

� every permutation of m� is equally likely�

� an element of m� is in A if and only if it is larger than all previous
elements of m� in sorted order	

In other words� permute m� randomly� then scan the resulting list from left
to right� checking o� those elements k that are larger than anything to the
left of k� the quantity Ejm� � Aj is the expected number of checks	

Example �	�� Let n $ �� and m $ �	 Suppose that when priorities are
assigned randomly to f�� �� � � � � ��g and these elements are sorted in decreasing
order by priority� we get the permutation

� $ ��� �� �� �� ��
� �� ��� �� �� �

This results in the following treap

ss ss s s ss ss

�
�R

�
��
�

�R
�

��
�

�R
�

�R
�

��
�

�R
�

��

�

� �

� � �

��

��

Then m� $ f�� �� �� �� �� ��
� �g	 If we restrict the random permutation � to
this set� we obtain the permutation ��� �� �� ��
� �� �� ��	 Scanning from left to
right and checking only those elements k that are greater than all elements to
the left of k� we get the sequence ��� ��
� ��	 This is exactly the sequence of
elements in m� appearing on the path from the root down to m in the treap	

A symmetric argument using m� gives the sequence ��� ��� which is the
sequence of elements in m� appearing on the path from the root down to m	
The length of the path is then the sum of the two lengths of these sequences
less �	 �

We are thus left with the problem of determining the expected value of the
random variable Hm� the number of checks obtained when scanning a random
permutation of f�� �� � � � � mg from left to right and checking every element
that is greater than anything to its left	

We claim that this number is exactly

EHm $
mX
k
�

�

k
� ����

We will obtain this by solving a simple recurrence� using the linearity of ex�
pectation	

Lecture �	 Random Search Trees ��

Suppose we permute f�� � � � � mg randomly to get the random permutation
�	 Deleting � from �� we get a random permutation �� of f�� �� � � � � mg	 Note
that an element other than � is checked when scanning � if and only if it is
checked when scanning ��� thus the presence or absence of � does not a�ect
whether � is checked �however� the presence or absence of � might very well
a�ect whether � is checked�	 Thus the expected number of checks on elements
other than � is the same in � as in ��� or EHm��	 The element � is checked if
and only if it occurs �rst in �� and this occurs with probability �

m
	 Thus the

expected number of checks on the element �� averaged over all permutations�
is �

m
	 By linearity of expectation�

EHm $ EHm�� "
�

m
�

The unique solution to this recurrence with EH� $ � is ����	
The quantity ���� is O�logm�	 This can be veri�ed by approximating the

sum above and below with de�nite integrals involving the functions �
x
and �

x��
�

and recalling from calculus thatZ m

�

dx

x
$ lnm $ ln � � log�m �

���� Expected time for deletion

A similar analysis allows us to calculate the expected number of rotations
necessary to delete m from its position in the treap	 The number of rotations
needed is the sum of the length of the rightmost path in the left subtree of m
and the length of the leftmost path in the right subtree of m	 To see this� try
rotating m down� if you rotate to the left �right�� the length of the rightmost
�leftmost� path in the left �right� subtree decreases by one and the length of
the leftmost �rightmost� path in the right �left� subtree stays the same	

Let us calculate the expected value of Gm� the length of the rightmost path
of the left subtree of m	 By symmetry� the expected length of the leftmost
path of the right subtree of m is EGn�m��� and by the linearity of expectation�
the expected number of rotations to remove m is EGm " EGn�m��	 We will
show below that this number is less than �(

An analysis similar to the analysis for EHm above reveals that EGm is the
expected number of checks obtained when scanning a random permutation of
the set f�� �� � � � � mg from left to right� where we check an element k provided
that

� k occurs strictly to the right of m�

� k is greater than all elements of f�� �� � � � � m
 �g occurring to the left
of k and either to the left or to the right of m	

�� Lecture �	 Random Search Trees

This is the same as the expected number of checks obtained when scanning
a random permutation of the set f�� �� � � � � m
 �g from left to right� where
we check element k if it is greater than all elements to its left� then place m
randomly in the list and erase those checks occurring to the left of m	

Example �	�	 For m $ �� we have the following six situations� all occurring
with equal probability

�

p
�

p
� �

p
� �

� �

p
� � � �

� � � � � �

The expected number of checks is �
	
� � " �

�
� � $ �

�
	 �

It is easy to see that the expected value of Gm is at most that of Hm���
which we would get if the checks to the left of m were not erased� thus EGm �
EHm�� $ O�logm�� and this su�ces for our complexity bound	

In fact� it turns out that EGm � �	 As above� the expected number
of checks on elements other than � is EGm��� and the probability that � is
checked is �

m�m��� � since � is checked if and only if m occurs leftmost� followed
immediately by �	 Again� by linearity of expectation� EGm is the expected
number of checks on elements other than � plus the expected number of checks
on �

EGm $ EGm�� "
�

m�m
 ��

and EG� $ �	 The solution to this recurrence is

EGm $
m
 �

m
�

