Analysis of Algorithms RSA Cryptography
CS6820 Fall 2022 Wednesday, October 19, 2022

RSA' is one of the most widely used encryption schemes in the world. It is a public-key
cipher: anyone can encrypt messages using the public key, but knowledge of the private key
is required for decryption. Knowing the public key does not help crack the private key.

Public-key cryptography makes the secure Internet possible. Before public-key cryptogra-
phy, keys had to be carefully exchanged between people who wanted to communicate, often
by non-electronic means. Now RSA is routinely used to exchange keys without allowing
anyone snooping on the channel to understand what has been communicated.

RSA security is based on the fact that there is no known efficient algorithm for factoring
large numbers. Deriving a private key from the corresponding public key appears to be as
hard as factoring.

Public key cryptography

In public key cryptography, messages are encoded using a public key E and decoded using
a private key D. Any agent A who wants to receive secret messages obtains a key pair
(Ea, D4). The agent A keeps the private key D4 secret and publishes the public key Fy4, say
on a webpage. Now if agent B wants to send a secret message m to A, B encodes the plaintext
message m using A’s public key to get an encoded ciphertext E4(m). The ciphertext is sent
to the recipient, who can decode it using the private key to get D4(E4(m)) = m. For this
to work, it must be the case that D, is a left inverse of F4, that is, D4 o E 4 is the identity
function. For it to be secure, it must be the case that neither the plaintext message nor the
private key can be derived from knowledge of the ciphertext or the public key.

Public key cryptography can also be used to digitally sign a message so that the recipient
can be sure that it came from the agent who purported to send it. If A wants to send a
signed secret message m to B, then A can send the pair (Eg(m), Da(Eg(m))) to B. When
B receives the message, they can decode it by applying their private key Dp to the first
component to get Dg(Ep(m)) = m. Then they can authenticate by applying A’s public key
E 4 to the second component to get E4(Da(Eg(m)))) = Eg(m) and comparing it with the
first component. If they match, then B is assured the message came from A, because A is
the only agent who knows D 4. For this to work, it must be the case that D4 is also a right
inverse of F 4, that is, E4 o D4 is the identity function.

I'Named for its inventors, Ronald Rivest, Adi Shamir, and Leonard Adelman.



The RSA algorithm

In RSA, the conversion between plaintext and ciphertext is done numerically on the binary
representation of the text and involves modular arithmetic on very large numbers, typically
much larger than would fit in a 64-bit integer. The Chinese remainder theorem can be used
for this purpose.

Key generation

1. Choose two large distinct random prime numbers p and ¢ (we will discuss in another
lecture later on how to do this). These must be kept secret. The larger p and ¢ are,
the stronger the encryption will be. With current technology, 1024 bits gives a decent
level of security.

2. Compute their product n = pq. This will be the modulus used for encryption. All
arithmetic will be in the ring Z,, of integers modulo n (often called Z/nZ).

3. Compute @(n), the totient of n. This is the number of positive integers less than n
that are relatively prime to n, that is, have no prime factor in common with n. If the
prime factorization of n is p{"* - - p;**, then p(n) = P p — 1) - -pzl’“_l(pk — 1),
so for a product of primes n = pq, it is just (p — 1)(¢ — 1). This is easy to compute
from knowledge of p and ¢, but it is not known how to compute it efficiently from just
knowledge of n, and it is conjectured to be intractible.

4. Choose an integer e such that 1 < e < ¢(n) and e is relatively prime to ¢(n). One
way to do this is to take e to be a prime greater than p(n)/4. Then e cannot divide
©(n), because 4 divides ¢(n) so e would have to divide ¢(n)/4. Since e is a prime not
dividing ¢(n), it is relatively prime to ¢(n).

5. Let d be the multiplicative inverse of e modulo ¢(n). The value of d can be computed
from e and ¢(n) using the extended Euclidean algorithm for integers, which gives
integers d and ¢ such that de + tp(n) = 1. Then d and e are multiplicative inverses
mod ¢(n), since de = 1 — typ(n) = 1 mod p(n).

The public key is the pair (e,n) and the private key is the pair (d,n). To allow people to
encode messages to you, you can advertise your public key, say on your webpage, keeping
your private key secret.

Encryption

A plaintext message m € 7Z, is encrypted as ciphertext via the formula: m — m® mod n.
Note that encryption can be done using only the publicly known n and e. Exponentiation


https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

modulo n can be done recursively:

k)2 2k+1

m = m(m")?

Y

reducing modulo n as necessary. The number of arithmetic operations needed to compute
m*® mod n is O(loge).

Decryption
A ciphertext ¢ is decrypted to plaintext via the formula: ¢ — ¢? mod n. Note that this
requires knowledge of the private key.

If we encrypt and then decrypt a plaintext message m, we obtain a new plaintext message
(m® mod n)? mod n = m® mod n. For this to give the original message back, we must have
m® = m mod n. We will show below that this is true, provided m is relatively prime to n.

Example

Let’s take p = 5, ¢ = 11, e = 3, and m = 8. Then n = pqg = 55, p(n) = 4 - 10 = 40, and
e = 3 which is relatively prime to 40. Its inverse mod 40 is 27, as 3 - 27 = 81 = 1 mod 40.
Then (e,n) = (3,55) and (d,n) = (27,55) are our public and private keys.

Now to encode the plaintext 8, which is relatively prime to n = 55, we compute 8 mod
55, which gives the ciphertext 17. To decrypt, we compute 1727 mod 55, which gives—well,
I guess you’ll just have to take my word for it—S8. It works!

Correctness of RSA

A number k € Z, is relatively prime to n iff it has a multiplicative inverse mod n. This is
because of the extended Euclidean algorithm, which gives integers s and ¢ such that

sk +tn = ged(k, n).

If & and n are relatively prime, then ged(k,n) = 1, so sk+tn =1, s0 sk = 1—tn =1 mod n,
which says that s and k are inverses mod n. Conversely, if £ has a multiplicative inverse s
mod n, then sk = 1 + tn for some t, so sk — tn = 1, and gcd(k,n) divides k and n, so it
must also divide sk — tn = 1, so it must be 1.

The set of invertible elements of Z,, is
Z;, ={x € Zy | gcd(z,n) = 1} = {x € Z, | x has a multiplicative inverse in Z,}.
This is a multiplicative subgroup of Z, of size |Z%| = p(n).

The correctness of RSA depends on Fuler’s theorem:

3



Theorem (Euler’s theorem). If m and n are relatively prime, then m?™ =1 mod n.

Proof. In other words, if m € Z*, then m#™ = 1, where arithmetic is the ring Z,. This is
true because m generates a cyclic subgroup {1,m, m? ..., m* 1} of Z* consisting of powers
of m, where k is the order of m, the smallest number such that m* = 1. Then k must
divide ¢(n); indeed, for any subgroup H of any finite group G, |H| divides |G|. But then
mem) — (mk)s@(n)/k = 19(M)/k — 1. O

Using Euler’s theorem, we can now prove the correctness of RSA. We wish to show that
if m is relatively prime to n, then m* = 1 mod n. But we know that ed = 1 mod ¢(n), so
ed =1+ kp(n) for some k. Then modulo n,

ed 1+kp(n)

me =m = m(mPME =m . 1F = m,

If the message m is not relatively prime to n, then this will not work, but in that case we
can pad the message with randomly chosen garbage. The chance that the resulting padded

message is not relatively prime to n is negligibly small, 1l> + % — piq to be precise.



