Lecture 40 Probabilistic Tests with
Polynomials

In this lecture, we give a useful probabilistic technique for testing properties
that are equivalent to the vanishing of some polynomial of low degree. This
technique has many interesting applications, not only in algebraic algorithms,
but also in graph theory and combinatorics. Several examples of its use will
be given later.

Good deterministic algorithms sometimes require considerable effort to
program, whereas “quick and dirty” methods involving random choices are
often just as good in practice. For example, it is quite difficult to test deter-
ministically whether a multivariate polynomial given by a straight-line pro-
gram is identically zero; however, there is a fast probabilistic test: evaluate
the polynomial on a randomly chosen input and check whether the result is
0. If not, the polynomial is certainly not identically 0; if so, chances are good
that it is.

The technique is based on the following theorem due to Zippel [111] and
independently to Schwartz [92]. It says essentially that the solutions of a
multivariate polynomial equation of low degree are sparse. Intuitively, this
theorem is true over the real numbers for any polynomial, regardless of degree:
the set

{(x1,...,2,) € R" | p(z1,...,2,) =0}
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is a surface of dimension n — 1. For example, a linear equation

n
Z a;rt; = a
=1

describes a hyperplane; in three dimensions, the quadratic equation

?+y -2 =0

describes the surface of a cone. A randomly chosen point with respect to
almost any reasonable probability distribution will almost certainly not lie on

that surface. Under the degree restriction, the theorem is also true over other
fields besides the reals, including finite fields.

Theorem 40.1 Let k be a field and let S C k be an arbitrary subset of k.
Let p(T) be a polynomial of n variables T = xy,...,x, and total degree® d with
coefficients in k. Then the equation p(T) = 0 has at most d - | S|~ solutions
in S™.

Proof. The proof is by induction on n and d. For n = 1, the result follows
from the fact that a univariate polynomial of degree d can have no more than
d roots in k. For d = 1, we need to show that a hyperplane

T, + oo + -+ apx, = a (64)

in k" can intersect S™ in at most |S|"~! points. Pick some a; # 0, say without
loss of generality a; # 0. Then for all solutions T of (64),

1 n
ry, = —(a— Zaia:i) ,
a1 i=2
therefore the value of x; is uniquely determined by the values of xs,..., z,.
There are exactly |S|"~! assignments to xo, ..., z, from S, thus at most | S|~

solutions to (64).

Now suppose we have a polynomial p of degree d > 1 with n > 1 variables.
If p is not irreducible, i.e. if p has a nontrivial factorization p = ¢r into two
polynomials ¢ and r of lower total degree, then by the induction hypothesis, ¢
has no more than deg ¢-|S|" ! zeros in S™ and r has no more than deg r-|S|*~!
zeros in S™. But p(@) = 0 iff ¢(@)r(a) = 0 iff either ¢(a@) = 0 or r(a) = 0, thus

{zeros of pin S™} = {zeros of ¢ in S™} U {zeros of  in S™} .

It follows that

|{zeros of p in S"}|

= |{zeros of ¢ in S™} U {zeros of r in S"}|
|{zeros of ¢ in S™}| + |{zeros of r in S™}|
degq - [S|" " +degr-|S|"!
(deg g +degr) - [S]"
= d-|S|"".

<
<

SMaximum degree of any term.
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Finally, we are left with the case that p is irreducible of degree d > 1 with
n+1 variables xy, ..., z,1. Let T =xy,...,2,. Then p = p(T, z,,41). For each
s € S, consider the polynomial p(T,s) € k[Z]. By the induction hypothesis,
p(T, s) has at most d-|S|" ! zeros in S™ (unless p(T, s) is identically zero; but
we show below that this cannot happen if p is irreducible). Since p(T, s) has
at most d - |S|""! zeros in S™, p has at most |S|-d-|S|"' =d-|S|" zeros in
St

To show that p(ZT, s) is not identically zero, we show that if it were, then
the polynomial x,.; — s would divide p, contradicting the irreducibility of p.
Suppose then that p(Z, s) = 0. Collect terms of p with like powers of x,,1 so
that p is expressed as a polynomial in z,,,, with coefficients in the polynomial
ring k[Z]. Divide p by the polynomial z,,; — s using ordinary polynomial
division with remainder. Then

p(fa xn-}-l) = q(ja xn—l—l)(l‘n—l—l - 8) +7r

where the degree of the remainder r is less than the degree of the divisor
ZTni1— S, S0 1 is a constant. Evaluating both sides of the equation at x,,1 = s,
we get that » = 0. Thus

p(Ta xn-}-l) = Q(T, xn-}-l) (xn—i—l - 8) )
contradicting the irreducibility of p. O
The following corollary is immediate.

Corollary 40.2 Let p(xy,z,...,x,) be a nonzero polynomial of degree d with
coefficients in a field k, and let S C k. If p is evaluated on a random element
(81,-..,8,) € S™, then

Pr(p(si,...,s,) =0) < — .

40.1 Applications

We give three applications of Theorem 40.1 and Corollary 40.2: finding perfect
matchings, testing isomorphism of labeled trees, and computing the rank of a
matrix over a finite field.

Perfect Matchings

We know how to test for the existence of a perfect matching in a bipartite
graph G and find one if it exists in polynomial time. It is unknown whether this
problem is in NC'. However, the following approach, based on an observation
of Lovész [74], gives a random NC' algorithm.

Assign to each edge (7, ) of G an indeterminate z;; and consider the n x n
bipartite adjacency matrix X with these indeterminates instead of 1’s. For
example,
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1 1 T11 T12 0
2 2 X = 0 o w93
3 3 T3 T3z 0

The determinant det X is a polynomial of degree n in the indeterminates x;;
with one term for each perfect matching, and none of these terms cancel. For
example, the graph above has two perfect matchings

1 1 le—-e1
2 2 2 >< 2
3 3 3 3
corresponding to the two terms of the determinant

det X' = 12293731 — 11223732 -

Thus G has a perfect matching iff det X is not identically 0. This is difficult to
test deterministically, since det X may be quite large. Chistov’s or Berkowitz’
algorithm gives a polylog-depth circuit with inputs z;; that computes the value
of det X for any specialization of the indeterminates x;;, but it is difficult to
test deterministically whether all such specializations give 0.

However, we can test this in RNC' by assigning randomly chosen elements
of a large enough finite field (say Z,, where p is some prime greater than
2n) to the z;;, and then asking whether the determinant evaluated at those
random elements is 0. This will happen with probability 1 if det X is indeed
identically 0, and with probability at most ;- = % if not, by Corollary 40.2.

Given the ability to test for the existence of a perfect matching, we can
then find one by deleting edges one by one and testing for the existence of a
perfect matching without that edge.

Isomorphism of Unordered Directed Trees

Here is an efficient probabilistic test for deciding whether two unordered®
directed trees of height h and size n are isomorphic. Associate with each
vertex v a polynomial f, in the variables xg, x1, ..., 2, inductively, as follows.
For each leaf v, set f, = xq. For each internal node v of height £ with children
Uiy .y Upm, SCL

fu - (ajk_fm)(xk_fvz)"'(xk_fvm)'

The degree of f, is equal to the number of leaves in the subtree rooted at
v. Using the fact that polynomial factorization is unique, it can be shown
that two trees are isomorphic iff the polynomials associated with the roots
of the trees are equal. This gives an efficient probabilistic test for unordered
tree isomorphism: test whether the difference of these two polynomials is
identically zero by evaluating it on a random input.

6A directed tree is ordered if the left-to-right order of each node’s children is given.
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Matrix Rank

Mulmuley’s algorithm computes the rank of a matrix over an arbitrary field k.
Recall that for a square matrix A, if rank A = rank A2, then rank A is given
by the index of the last nonzero term in the characteristic polynomial of A.
Le., if

xa(A) = A" = s AT oA s, AT

where s, # 0, then rank A = r. If rank A # rank A? and we are working
in the complex numbers, then we can take ZTA, where A" is the conjugate
transpose of A. As shown in Lecture 33, this matrix has the same rank as
A and the same rank as its square. Over finite fields, however, this does not
work. Mulmuley’s algorithm closes this gap, but his construction introduces
an extra indeterminate, and dealing with the resulting symbolic expressions
requires more processors.

Here is a probabilistic approach suggested in [15] that saves a factor of n
in the processor bound over Mulmuley’s deterministic algorithm. Multiply A
on the left by a random matrix R. The elements of R are chosen uniformly at
random from a sufficiently large set. By Corollary 40.2, R is nonsingular with
high probability: R is singular if and only if its determinant vanishes, and this
is a polynomial equation of low degree. Therefore, with high probability, RA
has the same rank as A, since the rank of RA is the dimension of the image
of RA as a linear map.

We argue also that with high probability, RA and (RA)? have the same
rank, allowing us to compute the rank from the characteristic polynomial of
RA as in Lemma 32.1.

Let r = rank A. The condition

rank (RA)? = rank RA = rank A (65)

is equivalent to the condition that the subspaces im RA and ker A are of
complementary dimension and intersect in the trivial subspace 0; in other
words, that every vector in k" can be represented uniquely as the sum of a
vector in im RA and one in ker A. In symbols,

k" = im RA @ ker A (66)

where @ denotes direct sum and = denotes isomorphism of vector spaces.

Now select a basis for im A among the columns of A. These columns
will comprise an n x r matrix B. Let C' be an n X (n — r) matrix whose
columns span ker A. Then condition (66) is equivalent to the condition that
the n x n matrix [RB|C] formed by juxtaposing the columns of RB and C
is nonsingular; equivalently, det [RB|C] # 0. By Corollary 40.2, this occurs
with high probability.

The beauty of this approach is that we never need to compute B or C; we
are happy enough just knowing that they exist.



