Lecture 22 More on Reductions and
NP-Completeness

Before we give a formal definition of reduction, let us clarify the notion of a
decision problem. Informally, a decision problem is a yes-or-no question. A
decision problem is given by a description of the problem domain, i.e. the set
of all possible instances of the problem, along with a description of the set of
“yes” instances.

For example, consider the problem of determining whether a given undi-
rected graph G has a k-clique. An instance of the problem is a pair (G, k),
and the problem domain is the set of all such pairs. The “yes” instances are
the pairs (G, k) for which G has a clique of size k.

There are many interesting discrete problems that are not decision prob-
lems. For example, many optimization problems like the traveling salesman
problem or the integer programming problem ask for the calculation of an
object that maximizes some objective function. However, many of these prob-
lems have closely related decision problems that are no simpler to solve than
the optimization problem. For the purposes of this discussion of reductions
and NP-completeness, we will restrict our attention to decision problems.

Definition 22.1 Let A C ¥ and B C T be decision problems. (Here ¥ and
" are the problem domains, and A and B are the “yes” instances.) We write
A <P B and say that A reduces to B in polynomial time if there is a function
o : Y — I' such that

e o is computable by a deterministic Turing machine in polynomial time;

116

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 117

e for all problem instances x € ¥,
reA iff o(r)eB.
We write A =P B if both A <P B and B <P A. O

The reducibility relation <P is often called polynomial-time many-one or Karp
reducibility. The superscript p stands for polynomial-time. The subscript m
stands for many-one and describes the function o, and is included to dis-
tinguish <P from another popular polynomial-time reducibility relation <k,
often called polynomial-time Turing or Cook reducibility. The relation <P is
stronger than <% in the sense that

A<’ B — A<MB.

The formal definition of <} involves oracle Turing machines and can be found
in [39, pp. 111ff.].
Intuitively, if A <P B then A is no harder than B. In particular,

Theorem 22.2 If A <P B and B has a polynomial-time algorithm, then so
does A.

Proof. Given an instance z of the problem A, compute o(z) and ask
whether o(x) € B. Note that the algorithm for B runs in polynomial time
in the size of its input o(z), which might be bigger than x; but since o is
computable in polynomial time on a Turing machine, the size of o(x) is at
most polynomial in the size of x, and the composition of two polynomials is
still a polynomial, so the overall algorithm is polynomial in the size of . O

In the last lecture we showed that CNFSat =P Clique. Below we give some
more examples of polynomial-time reductions between problems.

Definition 22.3 (Independent Set) An independent set in an undirected
graph G = (V,E) is a subset U of V such that U’ N E = 0, i.e. no two
vertices in U are connected by an edge in E. The independent set problem is
to determine, given G = (V, F') and k > 0, whether G has an independent set
U of cardinality at least k. O

Note that the use of “independent” here is not in the sense of matroids.
There exist easy polynomial reductions from/to the clique problem. Con-
sider the complementary graph G = (V, E), where

E = {(u,v)|u#v, (u,v) € E}.

Then G has a clique of size k iff G has an independent set of size k. This
simple one-to-one correspondence gives reductions in both directions, therefore
Independent Set =P Clique.

118 LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS

Definition 22.4 (Vertex Cover) A wverter cover in an undirected graph
G = (V,E) is a set of vertices U C V such that every edge in F' is adjacent to
some vertex in U. The vertex cover problem is to determine, given G' = (V, E)
and k£ > 0, whether there exists a vertex cover U in G of cardinality at most
k. O

Again, there exist easy polynomial reductions from/to Independent Set:
U C V is a vertex cover iff V' — U is an independent set. Therefore Vertex
Cover =P Independent Set.

Definition 22.5 (k-CNFSat) A Boolean formula is in k-conjunctive normal
form (k-CNF) if it is in conjuctive normal form and has at most & literals per
clause. The problem k-CNFSat is just CNFSat with input instances restricted
to formulas in k-CNF. In other words, given a Boolean formula in k-CNF, does
it have a satisfying assignment? O

In the general CNFSat problem, the number of literals per clause is not re-
stricted and can grow as much as linearly with the size of the formula. In
the k-CNFSat problem, the number of literals per clause is restricted to £,
independent of the size of the formula. The k-CNFSat problem is therefore a
restriction of the CNFSat problem, and could conceivably be easier to solve
than CNFSat. It turns out that 2CNFSat (and hence 1CNFSat also) is solv-
able in linear time, whereas k-CNFSat is as hard as CNFSat for any £ > 3. We
prove the latter statement by exhibiting a reduction CNFSat <P 3CNFSat.
Let B be an arbitrary Boolean formula in CNF. For each clause of the form

(b VLN - Nl V) (27)

with m > 4, let xy, s, ..., T, 3 be new variables and replace the clause (27)
in B with the formula

(61 \/EQ\/xl) N (_'1'1 \/63\/1'2) A (_'1'2 \/64\/1'3) JANERE
/\(_"'L'm_4 V Em_Q V l'm_g) VAN (_h%‘m_g V Em—l \Y ém) .

Let B’ be the resulting formula. Then B’ is in 3CNF, and B’ is satisfiable iff
B is. This follows from several applications of the following lemma:

Lemma 22.6 For any Boolean formulas C, D, £ and variable x not appearing
in C,D, or &, the formula

(xVC)AN(—mxVD)ANE (28)
15 satisfiable if and only if the formula
(CVD)ANE (29)

15 satisfiable.

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 119

Proof. This is just the resolution rule of propositional logic. Any satisfying
truth assignment for (28) gives a satisfying truth assignment for (29), since
one of x, —x is false, so either C or D is true. Conversely, in any satisfying
truth assignment for (29), one of C,D is true. If C, assign x := false. If D,
assign = := true. We can assign z freely since it does not appear in C,D or £.
In either case (28) is satisfied. O

The formula B’ is easily constructed from B in polynomial time. This con-
stitutes a polynomial-time reduction from CNFSat to 3SCNFSat. Furthermore,
3CNFSat is trivially reducible to k-CNFSat for any k& > 3, which in turn is
trivially reducible to CNFSat. Since <P is transitive, k-CNFSat =P CNFSat
for k > 3.

The problem 2CNFSat is solvable in linear time. In this case the clauses in
B contain at most two literals, and we can assume exactly two without loss of
generality by replacing any clause of the form (¢) with (¢V ¢). Now we think
of every two-literal clause (¢ V ¢') as a pair of implications

(=0 =) and (=0'—10). (30)

Construct a directed graph G = (V, E) with a vertex for every literal and
directed edges corresponding to the implications (30).

We claim that B is satisfiable iff no pair of complementary literals both
appear in the same strongly connected component of G. Under any satisfying
truth assignment, all literals in a strong component of G must have the same
truth value. Therefore, if any variable z appears both positively and negatively
in the same strong component of G, B is not satisfiable.

Conversely, suppose that no pair of complementary literals both appear in
the same strong component of G. Consider the quotient graph G’ obtained by
collapsing the strong components of G as described in Lecture 4. As proved
in that lecture, the graph G’ is acyclic, therefore induces a partial order on its
vertices. This partial order extends to a total order. We assign x := false if the
strong component of x occurs before the strong component of —x in this total
order, and x := true if the strong component of -~z occurs before the strong
component of z. It can be shown that this gives a satisfying assignment.

We know how to find the strong components of GG in linear time. This gives
a linear-time algorithm test for 2CNF satisfiability. We can also produce a
satisfying assignment in linear time, if one exists, using topological sort to
totally order the strong components.

Definition 22.7 (k-Colorability) Let C' a finite set of colors and G = (V, E)
an undirected graph. A coloring is a map x : V' — C such that x(u) # x(v)
for (u,v) € E. Given G and k, the k-colorability problem is to determine
whether there exists a coloring using no more than k colors. O

For k = 2, the problem is easy: a graph is 2-colorable iff it is bipartite iff
it has no odd cycles. This can be checked by BFS or DFS in linear time. We

120 LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS

show that for £ = 3, the problem is as hard as CNFSat by giving a reduction
CNFSat <P 3-colorability.

Let B be a Boolean formula in CNF. We will construct a graph G that is
3-colorable iff B is satisfiable.

There will be three special vertices called R, B, and G, which will be
connected in a triangle. In any 3-coloring, they will have to be colored with
different colors, so we assume without loss of generality that they are colored
red, blue, and green, respectively.

R G

B

We include a vertex for each literal, and connect each literal to its complement
and to the vertex B as shown.

8
8l

B

In any 3-coloring, the vertices corresponding to the literals x and T will have
to be colored either red or green, and not both red or both green. Intuitively,
a legal 3-coloring will represent a satisfying truth assignment in which the
green literals are true and the red literals are false.

To complete the graph, we add a subgraph like the one shown below for
each clause in B. The one shown below would be added for the clause (zVyV
ZVu VTV w). The vertices in the picture labeled G are all the same vertex,
namely the vertex G.

T Y z U 0 w
[[

Ge—9 Go—9 Go—9 Go—9 Go—eo (Go—re

Ge * G

This subgraph has the property that a coloring of the vertices on the top
row with either red or green can be extended to a 3-coloring of the whole
subgraph iff at least one of them is colored green. If all vertices on the top
row are colored red, then all the vertices on the middle row adjacent to vertices
on the top row must be colored blue. Starting from the left, the vertices along
the bottom row must be colored alternately red and green. This will lead to

LECTURE 22 MORE ON REDUCTIONS AND NP-COMPLETENESS 121

a conflict with the last vertex in the bottom row. (If the number of literals in
the clause is odd instead of even as pictured, then the rightmost vertex in the
bottom row is R instead of G.)

Conversely, suppose one of the vertices on the top row is colored green.
Pick one such vertex. Color the vertex directly below it in the middle row red
and the vertex directly below that on the bottom row blue. Color all other
vertices on the middle row blue. Starting from the left and right ends, color
the vertices along the bottom row as forced, either red or green. The coloring
can always be completed.

Thus if there is a legal 3-coloring, then the subgraph corresponding to each
clause must have at least one green literal, and truth values can be assigned so
that the green literals are true. This gives a satisfying assignment. Conversely,
if there is a satisfying assignment, color the true variables green and the false
ones red. Then there is a green literal in each clause, so the coloring can be
extended to a 3-coloring of the whole graph.

From this it follows that B is satisfiable iff GG is 3-colorable, and the graph G
can be constructed in polynomial time. Therefore CNFSat <P 3-colorability.

One can trivially reduce 3-colorability to k-colorability for k& > 3 by ap-
pending a k£ — 3 clique and edges from every vertex of the k — 3 clique to every
other vertex.

One may be tempted to conclude that in problems like k-CNFSat and
k-colorability, larger values of k always make the problem harder. On the
contrary, we shall see in the next lecture that the k-colorability problem for
planar graphs is easy for £k < 2 and k£ > 4, but as hard as CNFSat for £ = 3.

