2. A collection \mathcal{A} of events are d-wise independent if for any subset $\mathcal{B} \subseteq \mathcal{A}$ of size d or less, the probability that all events in $\underline{\mathcal{B}}$ eccur is the product of their probabilities. Consider the following generalization of Luby's scheme. For each $u \in \mathcal{Z}_{p}$, let A_{u} be any subset of $\underline{\mathcal{Z}_{p}}$. Randomly select $x_{0}, \ldots, x_{d=1} \in \mathcal{Z}_{p}$. Show that the p events

$$
x_{\theta}+x_{1} u+x_{2} u^{2}+\underline{\cdots}+x_{d-4} u^{d-1} \in A_{\pi}
$$

for $u \in \mathcal{Z}_{n}$ are d-wise independent. (Hint. Consider $d \times d$ Vandermonde matrices over \mathcal{Z}_{n} with rows

$$
\left(1, u, u^{2}, \ldots, u^{d=1}\right)
$$

shown in class to be nonsingular.)
3. Consider the following random $N C$ algorithm for finding a maximal (not maximum) matching in an undirected graph $G=(V, E)$. The algorithm proceeds in stages. At each stage, a matching M is produced, and the matched vertices and all adjacent edges are deleted. Each stage proceeds as follows:
(a) In parallel, each vertex u chooses a neighbor $t(u)$ at random. Set

$$
H:=\{(u, t(u)) \mid u \in V\} .
$$

(b) If there are two or more edges $(u, t(u))$ in H with $t(u)=v$, then v chooses one of them arbitrarily and deletes the rest from H.
(c) Let U be the set of vertices with at least one incident edge in H. Each vertex in the graph (U, H) has degree 1 or 2 . If 2 , it randomly selects one of its two incident edges as its favorite. If 1, it selects its one incident edge as its favorite.
(d) For each edge $e \in H, e$ is included in M if it is the favorite of both its endpoints.

Show that M is a matching, and the expected number of edges deleted is at least a constant fraction of the remaining edges. Conclude that the expected number of stages before achieving a maximal matching is $O(\log m)$.
solutions to $A x-z$ also has dimension $d=k$. In $\underline{\mathcal{Z}_{n}}$, any such subspace has p^{d-k} elements. Thus

$$
\begin{aligned}
& \frac{1}{p^{d}} \sum_{z_{u} \in \underline{A_{u}}, u \in \mathcal{B}} \underline{\mid\left\{\left(x_{0}, \ldots, x_{d=1}\right)\right\rfloor} \underline{\sum_{u \in \mathcal{B}}} \sum_{i=0}^{d-1} x_{i} u^{i}=\underline{\left.z_{u}\right\} \mid} \\
& =\frac{1}{p^{d}} \sum_{z_{u} \in \underline{A_{u}}, u \in \mathcal{B}} p^{d-k} \\
& =\frac{p^{d-k}}{p^{d}} \sum_{z_{u} \underline{A_{u}}} 1 \\
& =\frac{1}{p^{k}} \prod_{u \in \underline{\mathcal{B}}} A_{u}=
\end{aligned}
$$

3. The solution to this problem is very similar to the analysis of Luby's algorithm given in class. Recall from there that a vertex is good if

$$
\sum_{u \in N(v)} \frac{1}{d(u)} \geq \frac{1}{3}
$$

Lemma A For all good $v, \operatorname{Pr}(v \in U) \geq \frac{1}{9}$.

Proof. If v has a neighbor u of degree 2 or less, then

$$
\begin{aligned}
\operatorname{Pr}(v \in U) & \geq \operatorname{Pr}(v=t(u)) \\
& \geq \frac{1}{2} .
\end{aligned}
$$

Otherwise $d(u) \geq 3$ for all $u \in N(v)$, and as in the analysis of Luby's algorithm, there must exist a subset $M(v) \subseteq N(v)$ such that

$$
\frac{1}{3} \leq \sum_{u \in M(v)} \frac{1}{d(u)} \leq \frac{2}{3}
$$

Then

$$
\begin{aligned}
& \operatorname{Pr}(v \in U) \\
& \geq \operatorname{Pr}(\exists u \in M(v) v=t(u)) \\
& \geq \sum_{u \in M(v)} \operatorname{Pr}(v=t(u))-\sum_{\substack{u, w \in M(v) \\
u \neq w}} \operatorname{Pr}(v=t(u) \wedge v=t(w)) \\
& \quad(\text { by inclusion-exclusion }) \\
& \geq \sum_{u \in M(v)} \operatorname{Pr}(v=t(u))-\sum_{\substack{u, w \in M(v) \\
u \neq w}} \operatorname{Pr}(v=t(u)) \cdot \operatorname{Pr}(v=t(w))
\end{aligned}
$$

(by pairwise independence)

$$
\begin{aligned}
& \geq \sum_{u \in M(v)} \frac{1}{d(u)}-\sum_{u, w \in M(v)} \frac{1}{d(u)} \cdot \frac{1}{d(w)} \\
& =\left(\sum_{u \in M(v)} \frac{1}{d(u)}\right) \cdot\left(1-\sum_{w \in M(v)} \frac{1}{d(w)}\right) \\
& \geq \frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9} .
\end{aligned}
$$

Lemma B For all $v, \operatorname{Pr}(v$ is matched $\mid v \in U) \geq \frac{1}{2}$.

Proof. There are several cases, depending on the number of H-neighbors of v and the number of H-neighbors of each H-neighbor of v. The situation minimizing the likelihood of v being matched is

There are eight possibilities for the choices of favorites of u, v, w, all equally likely. Of these, four give matchings for v. Thus

$$
\operatorname{Pr}(v \text { is matched } \mid v \in U) \geq \frac{1}{2}
$$

Combining Lemmas A and B , the probability that any particular good vertex is matched is at least $\frac{1}{18}$. The remainder of the argument is exactly like the analysis of Luby's algorithm given in class.
Note that the proof of Lemma A required only pairwise independence and the proof of Lemma B required only 3 -wise independence, thus using Exercise 2 the algorithm can be made deterministic.

