
Lecture �
 Parallel Algorithms and NC

Parallel computing is a popular current research topic	 The successful design
of parallel algorithms requires identifying sources of data independence in a
problem that allow it to be decomposed into independent subproblems� which
can then be solved in parallel	 This process often involves looking deeply into
the mathematical structure of the problem	

Aside from speci�c architectures such as the hypercube� there are many
di�erent general models of parallel computation in use	 Among the most
popular are


� Parallel Random Access Machines �PRAMs�	 A PRAM consists of a set
of processors that have access to a common shared memory	 Each pro�
cessor may have registers and local memory of its own	 We charge one
time unit for a memory access �which many consider an unreasonable
assumption�	 PRAMs can be exclusive or concurrent read and exclu�
sive or concurrent write� giving four versions� denoted CRCW� CREW�
ERCW� EREW	 An EREW PRAM does not allow processors to read
and write simultaneously to the same memory location� and requires the
programmer to insure that this does not happen	 A CRCW PRAM does
allow this� and resolves con�icts arbitrarily	

� Vector machines	 This model can be SIMD �Single Instruction Multiple
Data� or MIMD �Multiple Instruction Multiple Data�	 The processors
are arranged in an array and all execute synchronously	 The SIMD

���



��� Lecture �� Parallel Algorithms and NC

machines all execute the same instruction� but execute it on di�erent
data	 Processors communicate by message passing	

� Boolean and arithmetic circuits	 These are essentially dags with input
nodes� output nodes� and basic bit operations or arithmetic operations
associated with internal nodes	 This model is quite common� especially
in the theory of NC 	 The size of the circuit �number of nodes� corre�
sponds roughly to the number of processors in a PRAM� and the depth
of the circuit �length of the longest path from an input to an output�
corresponds to time	 Since each circuit has only a �xed number of input
nodes� there must be a di�erent circuit for each input length	

Many object to these models on the grounds that they do not adequately
capture the �communication bottleneck � since communication complexity is
not usually counted	 These arguments do have merit� and one should not
immediately take a parallel complexity bound obtained in one of these models
as an accurate indication of the performance one would expect of a parallel
implementation under current technology	 However� independent of whether
or not the complexity bounds are realistic� the important matter is to identify
the fundamental sources of independence in a computational problem that al�
low e�cient parallelization	 These are mathematical properties that transcend
technology� they will be there to exploit in any parallel machine or machine
model now or in the future	

��� The Class NC

The complexity class NC plays the same role in parallel computation that P
plays in sequential computation	 A problem is considered to be �e�ciently
parallelizable �at least in theory� if it can be shown to be in NC 	 The name
NC stands for Nick�s Class� after Nick Pippenger� who invented it	

Like P � the de�nition of NC is quite robust in the sense that it is impervi�
ous to minor perturbations of the machine model	 It is the class of problems
that can be solved on a PRAM in �logn�O��� or polylogarithmic time using
nO��� or polynomially many processors	 It can also be de�ned as the class of
problems accepted by a uniform family of Boolean circuits� one for each input
length� of polylogarithmic depth and polynomial size	 The uniformity condi�
tion says essentially that the nth circuit in this family is easily constructed�
and is a technical condition that allows circuits and PRAMs to simulate each
other e�ciently	 See the survey paper ���� for details	

The question NC
�
$ P is analogous to the P

�
$ NP question	 There is

an NC reducibility relation and a notion of P �completeness with respect to
that reducibility relation	 There is a set of problems known to be P �complete�
among them the circuit value problem ��� and max �ow ����	 The classes P
and NC are equal if any of these problems turn out to be in NC 	



Lecture �� Parallel Algorithms and NC ��	

��� Parallel Matrix Multiplication

To illustrate� we give a simple parallel algorithm to compute the product of
two n	n matrices in time �"logn with n� processors	 We use the arithmetic
circuit model	

Let A and B be two n	 n matrices	 We assume that the entries Aij of A
and Bij of B are available at the n� input nodes of the circuit	 Recall that

�AB�ij $
nX

k�

AikBkj � ����

In parallel� compute the n� products AikBkj for each triple i� j� k	 This can be
done in one step� since we have n� processors	 Then allocate n processors to
each pair i� j and compute the sums ���� from the data computed in the �rst
step	 This sum can be obtained in logn time in parallel by placing each of the
n summands at the leaves of a complete binary tree� and summing adjacent
pairs	 This requires logn stages� since at each stage the number of data items
is halved	 The value at the root of the binary tree is the sum of the elements
at the leaves	

��� Parallel Pre�x

This circuit is a very useful subroutine in many parallel algorithms	 Suppose
we have n elements x�� x�� � � � � xn�� and a binary operation � that is associative
but not necessarily commutative	 We wish to compute the pre
x products yi�
� � i � n
 �� where

yi $ x� � x� � x� � � �xi �

Consider the following circuit with n input gates and n output gates	 The
ith input gate receives xi and the ith output gate gives yi	 In the �rst step�
every processor i passes its data to processor i"�� and the two data items are
multiplied	 In the next stage� data is passed from each i to i " �� in the next
stage� from i to i " �� and so on for logn stages	 The following illustration
gives the circuit for n $ ��	



��� Lecture �� Parallel Algorithms and NC

s s s s s s s s s s s s s s s s

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�s s s s s s s s s s s s s s s

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHH

HHHH
HHHHs s s s s s s s s s s s s s

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXX

XXXXXXXXs s s s s s s s s s s s
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

x� x� x� x� x� x
 x	 x� x� x� x�� x�� x�� x�� x�� x�


y� y� y� y� y� y
 y	 y� y� y� y�� y�� y�� y�� y�� y�


This construction works even if n is not a power of �	 See ���� for an alternative
construction	

This parallel algorithm has a particularly nice implementation on a hyper�
cube	 We can embed the circuit of �n processors on a hypercube of dimension
n in such a way that all message routing can be done with no collisions and
no message travels more than a distance of � on the cube	

This embedding will be de�ned in terms of the Gray representation of
the numbers in the set f�� �� �� � � � � �n 
 �g� as opposed to the usual binary
representation	 Both representations pair elements of this set with the n�bit
binary strings in a one�to�one fashion	 In the natural order

� � � � � � � � � � �n 
 � �

the corresponding sequence of strings in the binary representation is obtained
by starting from � � � � � and successively adding � in binary	 For example� for
n $ � we get the sequence

����� ����� ����� ����� ����� ����� ����� ����� ����� � � � � ���� �

In the Gray representation� the sequence is

����� ����� ����� ����� ����� ����� ����� ����� ����� � � � � ���� �

Each element is obtained from the last by �ipping one bit	 If we graph the
sequence of bits that are �ipped� the picture looks similar to an English ruler
with demarcations for inches� half inches� quarter inches� and so forth	

time 
�

bit

�
�
�
�
�
�



Lecture �� Parallel Algorithms and NC ���

Now consider the unit cube in n�dimensional Euclidean space	 Its vertices
are points with Euclidean coordinates �a�� � � � � an��� where each ai � f�� �g	
We map the processor that is ith from the left in the parallel pre�x circuit to
the point of the cube whose Euclidean coordinates give i in the Gray repre�
sentation	 For n $ �� the Gray ordering is

���� ���� ���� ���� ���� ���� ���� ���

and this corresponds to the following Hamiltonian circuit in the cube


s s
s s
s s
s s

�
�
�

�
�
�

�
�
�

�
�
�

�
�

��
�

��

�
�

�
�

�
�����

��� ���

���

���

������

���

It is easy to convert back and forth between the binary and Gray rep�
resentations	 Let bi and gi denote the binary and Gray representations of i
respectively	 Then the jth bit of gi �counting from the left and starting at
�� is the exclusive�or of the jth and j 
 �st bits of bi� and the jth bit of bi is
obtained from gi by taking the exclusive�or of the jth bit of gi and all bits to
its left	 Converting bi to gi takes time O��� with n processors and converting
gi to bi takes time O�logn� with n processors using parallel pre�x	

In the next lecture we will see how to characterize these operations alge�
braically	 This will give a convenient means for proving properties of binary
and Gray representations and of routing on the hypercube	 We will then use
these tools to analyze our hypercube implementation of parallel pre�x	


