Lecture 28 Parallel Algorithms and NC

Parallel computing is a popular current research topic. The successful design
of parallel algorithms requires identifying sources of data independence in a
problem that allow it to be decomposed into independent subproblems, which
can then be solved in parallel. This process often involves looking deeply into
the mathematical structure of the problem.

Aside from specific architectures such as the hypercube, there are many
different general models of parallel computation in use. Among the most
popular are:

e Parallel Random Access Machines (PRAMs). A PRAM consists of a set
of processors that have access to a common shared memory. Each pro-
cessor may have registers and local memory of its own. We charge one
time unit for a memory access (which many consider an unreasonable
assumption). PRAMSs can be exclusive or concurrent read and exclu-
sive or concurrent write, giving four versions, denoted CRCW, CREW,
ERCW, EREW. An EREW PRAM does not allow processors to read
and write simultaneously to the same memory location, and requires the
programmer to insure that this does not happen. A CRCW PRAM does
allow this, and resolves conflicts arbitrarily.

e Vector machines. This model can be SIMD (Single Instruction Multiple
Data) or MIMD (Multiple Instruction Multiple Data). The processors
are arranged in an array and all execute synchronously. The SIMD

151

152 LECTURE 28 PARALLEL ALGORITHMS AND NC

machines all execute the same instruction, but execute it on different
data. Processors communicate by message passing.

e Boolean and arithmetic circuits. These are essentially dags with input
nodes, output nodes, and basic bit operations or arithmetic operations
associated with internal nodes. This model is quite common, especially
in the theory of NC. The size of the circuit (number of nodes) corre-
sponds roughly to the number of processors in a PRAM, and the depth
of the circuit (length of the longest path from an input to an output)
corresponds to time. Since each circuit has only a fixed number of input
nodes, there must be a different circuit for each input length.

Many object to these models on the grounds that they do not adequately
capture the “communication bottleneck”, since communication complexity is
not usually counted. These arguments do have merit, and one should not
immediately take a parallel complexity bound obtained in one of these models
as an accurate indication of the performance one would expect of a parallel
implementation under current technology. However, independent of whether
or not the complexity bounds are realistic, the important matter is to identify
the fundamental sources of independence in a computational problem that al-
low efficient parallelization. These are mathematical properties that transcend
technology; they will be there to exploit in any parallel machine or machine
model now or in the future.

28.1 The Class NC

The complexity class NC plays the same role in parallel computation that P
plays in sequential computation. A problem is considered to be “efficiently
parallelizable” (at least in theory) if it can be shown to be in NC. The name
NC stands for Nick’s Class, after Nick Pippenger, who invented it.

Like P, the definition of NC' is quite robust in the sense that it is impervi-
ous to minor perturbations of the machine model. It is the class of problems
that can be solved on a PRAM in (logn)°® or polylogarithmic time using
n°W or polynomially many processors. It can also be defined as the class of
problems accepted by a uniform family of Boolean circuits, one for each input
length, of polylogarithmic depth and polynomial size. The uniformity condi-
tion says essentially that the n'" circuit in this family is easily constructed,
and is a technical condition that allows circuits and PRAMSs to simulate each
other efficiently. See the survey paper [23] for details.

The question NC L Pis analogous to the P Z NP question. There is
an NC reducibility relation and a notion of P-completeness with respect to
that reducibility relation. There is a set of problems known to be P-complete,
among them the circuit value problem [67] and max flow [42]. The classes P
and NC' are equal if any of these problems turn out to be in NC.

LECTURE 28 PARALLEL ALGORITHMS AND NC 153

28.2 Parallel Matrix Multiplication

To illustrate, we give a simple parallel algorithm to compute the product of
two n x n matrices in time 1+log n with n® processors. We use the arithmetic
circuit model.

Let A and B be two n x n matrices. We assume that the entries 4;; of A
and B;; of B are available at the n? input nodes of the circuit. Recall that

(AB)ij = > AuBy; . (36)
k=1

In parallel, compute the n® products A By, for each triple ¢, j, k. This can be
done in one step, since we have n? processors. Then allocate n processors to
each pair 7, 7 and compute the sums (36) from the data computed in the first
step. This sum can be obtained in logn time in parallel by placing each of the
n summands at the leaves of a complete binary tree, and summing adjacent
pairs. This requires logn stages, since at each stage the number of data items
is halved. The value at the root of the binary tree is the sum of the elements
at the leaves.

28.3 Parallel Prefix

This circuit is a very useful subroutine in many parallel algorithms. Suppose
we have n elements xy, x1,...,2, 1 and a binary operation - that is associative
but not necessarily commutative. We wish to compute the prefiz products y;,
0 <12<n-—1, where

yi = xo-l‘l.xQ...xi.

Consider the following circuit with n input gates and n output gates. The
i'" input gate receives z; and the i™® output gate gives y;. In the first step,
every processor i passes its data to processor ¢+ 1, and the two data items are
multiplied. In the next stage, data is passed from each i to ¢ + 2; in the next
stage, from ¢ to ¢ + 4; and so on for logn stages. The following illustration
gives the circuit for n = 16.

154 LECTURE 28 PARALLEL ALGORITHMS AND NC

Tog T1 T2 T3 T4 Ty Tg Ty Tg T9g T1o T11 T12 T13 T14 T15

J
12 Y13 Y14 Y15

<

[]
Yo Y1 Y2 Y3 Ys Ys Ys Yr Ys Yo Yio

<

11

This construction works even if n is not a power of 2. See [68] for an alternative
construction.

This parallel algorithm has a particularly nice implementation on a hyper-
cube. We can embed the circuit of 2" processors on a hypercube of dimension
n in such a way that all message routing can be done with no collisions and
no message travels more than a distance of 2 on the cube.

This embedding will be defined in terms of the Gray representation of
the numbers in the set {0,1,2,...,2" — 1}, as opposed to the usual binary
representation. Both representations pair elements of this set with the n-bit
binary strings in a one-to-one fashion. In the natural order

0<l<2<---<2"=1,

the corresponding sequence of strings in the binary representation is obtained
by starting from 0...0 and successively adding 1 in binary. For example, for
n = 4 we get the sequence

0000, 0001, 0010, 0011, 0100, 0101, 0110, O111, 1000, ..., 1111.
In the Gray representation, the sequence is
0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100, 1100, ..., 1000 .

Each element is obtained from the last by flipping one bit. If we graph the
sequence of bits that are flipped, the picture looks similar to an English ruler
with demarcations for inches, half inches, quarter inches, and so forth.

5

g
A A A A A A A A A A A A A A

time —

LECTURE 28 PARALLEL ALGORITHMS AND NC 155

Now consider the unit cube in n-dimensional Euclidean space. Its vertices
are points with Euclidean coordinates (ao, ..., a,_1) where each a; € {0,1}.
We map the processor that is i*" from the left in the parallel prefix circuit to
the point of the cube whose Euclidean coordinates give ¢ in the Gray repre-
sentation. For n = 3, the Gray ordering is

000, 001, 011, 010, 110, 111, 101, 100

and this corresponds to the following Hamiltonian circuit in the cube:
101 111

0014 011

100} 110

000 ¢ 010

It is easy to convert back and forth between the binary and Gray rep-
resentations. Let b; and g; denote the binary and Gray representations of @
respectively. Then the j*™ bit of ¢g; (counting from the left and starting at
0) is the exclusive-or of the j*®® and j — 1% bits of b;, and the j*® bit of b; is
obtained from g; by taking the exclusive-or of the ;' bit of g; and all bits to
its left. Converting b; to g; takes time O(1) with n processors and converting
g; to b; takes time O(logn) with n processors using parallel prefix.

In the next lecture we will see how to characterize these operations alge-
braically. This will give a convenient means for proving properties of binary
and Gray representations and of routing on the hypercube. We will then use
these tools to analyze our hypercube implementation of parallel prefix.

