Selection in worst-case linear time CLRS Sec. 10.3 pp. 189-191

We now examine a selection algorithm whose running time is O(x) in the
worst case. Like RANDOMIZED-SELECT, the algorithm SELECT finds the de-
sired element by recursively partitioning the input array. The idea behind
the algorithm, however, is to guarantee a good split when the array is par-
titioned. SELECT uses the deterministic partitioning algorithm PARTITION



Figure 10.1 Analysis of the algorithm SELECT. The n elements are represented
by small circles, and each group occupies a column. The medians of the groups
are whitened, and the median-of-medians x is labeled. Arrows are drawn from
larger elements to smaller, from which it can be seen that 3 out of every group
of 5 elements to the right of x are greater than x, and 3 out of every group of 5
elements to the left of x are less than x. The elements greater than x are shown
on a shaded background.

from quicksort (see Section 8.1), modified to take the element to partition
around as an input parameter.

The SELECT algorithm determines the ith smallest of an input array of
n elements by executing the following steps.

1. Divide the n elements of the input array into |n/5] groups of 5 elements
each and at most one group made up of the remaining » mod 3 elements.

2. Find the median of each of the [n/5] groups by insertion sorting the
elements of each group (of which there are 5 at most) and taking its
middle element. (If the group has an even number of elements, take the
larger of the two medians.)

3. Use SELECT recursively to find the median x of the [n/5] medians found
in step 2.

4. Partition the input array around the median-of-medians x using a mod-
ified version of PARTITION. Let k be the number of elements on the
low side of the partition, so that n — k is the number of elements on the
high side.

5. Use SELECT recursively to find the jth smallest element on the low side
if i < k, or the (i — k)th smallest element on the high side if i > k.

To analyze the running time of SELECT, we first determine a lower bound
on the number of elements that are greater than the partitioning element x. -
Figure 10.1 is helpful in visualizing this bookkeeping. At least half of
the medians found in step 2 are greater than or equal to the median-of-
medians x. Thus, at least half of the [#/5] groups contribute 3 elements
that are greater than x, except for the one group that has fewer than 5
elements if 5 does not divide » exactly, and the one group containing x



10.3 Selection in worst-case linear time 191

itself. Discounting these two groups, it follows that the number of elements
greater than x is at least

(112 = 35

Similarly, the number of elements that are less than x is at least 3n/10—6.
Thus, in the worst case, SELECT is called recursively on at most 7#/10 + 6
elements in step 5.

We can now develop a recurrence for the worst-case running time 7'(n)
of the algorithm SELECT. Steps 1, 2, and 4 take O(n) time. (Step 2 consists
of O(n) calls of insertion sort on sets of size O(1).) Step 3 takes time
T([n/5]), and step 5 takes time at most 7(7n/10 + 6), assuming that 7 is
monotonically increasing. Note that 7n/10 + 6 < n for n > 20 and that
any input of 80 or fewer elements requires O(1) time. We can therefore
obtain the recurrence

e(1) if n <80,
I(n) < {T((n/ﬂ) +T(7n/10+6) + O(n) if n > 80 .

We show that the running time is linear by substitution. Assume that
T(n) < cn for some constant ¢ and all n < 80. Substituting this inductive
hypothesis into the right-hand side of the recurrence yields

T(n) c[n/5] +c(7n/10 + 6) + O(n)
cn/5+c+Ten/10+ 6¢ + O(n)

9cn/10+ 7c + O(n)
cn,
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since we can pick ¢ large enough so that ¢(n/10 — 7) is larger than the
function described by the O(n) term for all » > 80. The worst-case running
time of SELECT is therefore linear.

As in a comparison sort (see Section 9.1), SELECT and RANDOMIZED-
SELECT determine information about the relative order of elements only
by comparing elements. Thus, the linear-time behavior is not a result of
assumptions about the input, as was the case for the sorting algorithms in
Chapter 9. Sorting requires Q(nlgn) time in the comparison model, even
on average (see Problem 9-1), and thus the method of sorting and indexing
presented in the introduction to this chapter is asymptotically inefficient.
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