Lecture 16 Max Flow

Suppose we are given a tuple G = (V,¢,s,t), where V is a set of vertices,
s,t € V are distinguished vertices called the source and sink respectively, and
c is a function ¢ : V2 — R, assigning a nonnegative real capacity to each pair
of vertices. We make G into a directed graph by defining the set of directed
edges

E = {(u,v)|ec(u,v) >0} .

Intuitively, we can think of the edges as wires or pipes along which electric
current or fluid can flow; the capacity c(e) represents the carrying capacity of
the wire or pipe, say in amps or gallons per minute. The max flow problem
is to determine the maximum possible flow that can be pushed from s to ¢,
and to find a routing that achieves this maximum. The following definition is
intended to capture the intuitive idea of a flow.

Definition 16.1 A function f : V? — R is called a flow if the following three
conditions are satisfied:

(a) skew symmetry: for all u,v € V,

fluv) = =f(v,u);

(b) conservation of flow at interior vertices: for all vertices u not in {s, ¢},

Zf(uvv) = 0;

veV
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(c) capacity constraints: f < ¢ pointwise; i.e., for all u, v,

fu,0) < e(u,v) .
We say that (u,v) is saturated if f(u,v) = c(u,v). O

If we think of edges (u,v) for which f(u,v) > 0 as carrying flow out of u,
and edges (u,v) for which f(u,v) < 0 (or equivalently by (a), f(v,u) > 0) as
carrying flow into u, then condition (b) says that the total flow out of any
interior vertex is equal to the total flow into that vertex, or in other words,
the net flow (total flow out minus total flow in) at any interior vertex is 0.

It follows from (a) that f(u,u) = 0 for any vertex wu.

Figure 1 illustrates a graph with capacities ¢ (ordinary typeface) and a
flow f on that graph (italic). Edges not shown have a capacity of 0 and a flow
that is the negative of the flow in the opposite direction; e.g., ¢(u, s) = 0 and
f(u,s) = —4. If neither an edge nor its opposite is shown (e.g. (s,t)), then
the capacities and flows in both directions are 0.

Figure 1

Definition 16.2 An s,t-cut (or just cut, when s,t are understood) is a pair
A, B of disjoint subsets of V' whose union is V' such that s € A, t € B. The
capacity of the cut A, B, denoted c(A4, B), is

c¢(A,B) = Z c(u,v),

u€A, vEB

i.e., the total capacity of the edges from A to B. If f is a flow, we define the
flow across the cut A, B to be

f(AB) = > fluv).
ucA, vEB

O

Note that by condition (a) of Definition 16.1, f(A, B) gives the net flow across
the cut from A to B; that is, the sum of the positive flow values on edges from
A to B minus the sum of the positive flow values on edges from B to A.
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Definition 16.3 The value of a flow f, denoted |f], is defined to be

fl = F{shV —{s})
= Zf(87v)7

veV

or in other words the net flow out of s. O

In the example of Figure 1, |f| = 6.

Although Definition 16.3 defines the value of the flow f with respect to
the cut {s},V — {s}, the flow value will be the same no matter where it is
measured:

Lemma 16.4 For any s,t-cut A, B and flow f,
I/l = f(A,B).

Proof. Induction on the cardinality of A, using condition (b) of Definition
16.1. O

In particular,

f{sh,V=A{s}) = F(V-={t},{t}),

which says that the net flow out of s equals the net flow into ¢.
The flow across any cut surely cannot exceed the capacity of the cut. This
is expressed in the following lemma:

Lemma 16.5 For any s,t-cut A, B and flow f,
/I < e(A,B).
Proof. Lemma 16.4 and condition (c). O

The main result of this lecture will be the Max Flow-Min Cut Theorem, which
states that the minimum cut capacity is achieved by some flow; i.e., the in-
equality in Lemma 16.5 is an equality for some cut A, B and some flow f*.
The flow f* necessarily has maximum value among all flows on G' by Lemma
16.5, and is called a maz flow. The flow f* is not unique, but its value is.

16.1 Residual Capacity

Definition 16.6 Given a flow f on G with capacities ¢, we define the residual
capacity function r : V? — R to be the pointwise difference

r = c—f.

The residual graph associated with G = (V| E,c¢) and flow f is the graph
Gy = (V,E},r), where

Ey = {(u,v)|r(u,v) >0} .
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The residual capacity r(u,v) represents the amount of additional flow that
could be pushed along the edge (u, v) without violating the capacity constraint
(c) of Definition 16.1. In case the flow f(u,v) is negative, this “additional
flow” could involve backing off the positive flow from v to u. For example, if
c(u,v) =8 and f(u,v) =6, and (v,u) € G so that ¢(v, u) = 0, then r(u,v) = 2
and r(v,u) = ¢(v,u) — f(v,u) = 0—(—6) = 6. The residual graph for the flow
in Figure 1 is given in Figure 2 below.

Note that the residual graph Gy can have an edge where there was none
in G. However, Gy has no edges (u,v) where neither (u,v) nor (v,u) were
present in G, so |Ef| < 2-|E|.

Intuitively, the formation of the residual graph translates the problem by
making f the new origin (zero flow). Solving the residual flow problem is
tantamount to solving the original flow problem; a solution to the residual
flow problem can be added to f to obtain a solution to the original problem.
This observation is formalized in the following lemma.

Lemma 16.7 Let f be a flow in G, and let G be its residual graph.

(a) The function f'is a flow in Gy iff f+ f' is a flow in G.

(b) The function f' is a maz flow in Gy if f + f' is a maz flow in G.

(¢) The value function is additive; i.e., |f + f'| = |f| + |f'| and |f — f'| =
[fI=1f]-

(d) If f is any flow and f* a max flow in G, then the value of a mazx flow
in Gy s | f*] = |f].

Proof.

(a) Since f is a flow, it satisfies skew symmetry (f(u,v) = —f(v,u)) and
conservation at interior vertices (3, f(u,v) = 0). Thus f’ satisfies these
properties iff f + f' does. To show that the capacity constraints are
satisfied, recall that the capacities of Gy are given by r = ¢ — f, where
¢ is the capacity function of G. Then

fr<r iff ff<e—f
iff f+f <c.
(b) This follows directly from (a).
(c) By the definition of flow value,

IFE1 = Y(f(s0) £ f(s,v))
= Zf(57v):t2fl(57v)

= 1=
(d) This follows directly from (b) and (c).
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16.2 Augmenting Paths

Definition 16.8 Given GG and flow f on G, An augmenting path is a directed
path from s to ¢ in the residual graph Gy. O

An augmenting path represents a sequence of edges on which the capacity
exceeds the flow, i.e., on which the flow can be increased. As observed above,
on some edges this “increase” may actually involve decreasing a positive flow
in the opposite direction.

Figure 2 illustrates the residual graph associated with the flow in the ex-
ample of Figure 1 and an augmenting path. The minimum capacity of any
edge in this path is 2, so the flow can be increased on these edges by 2, result-
ing in a new flow in the original graph with value 2 greater than that of |f].
Note that the “increase” on (u,v) is essentially a decrease of a positive flow
on (v,u).

Figure 2

We are now ready to state and prove the main theorem of this lecture:

Theorem 16.9 (Max Flow-Min Cut Theorem [34]) The following
three statements are equivalent:

(a) [ is a maz flowin G = (V,E,c);
(b) there is an s,t-cut A, B with ¢(A, B) = |f|;

(c) there does not exist an augmenting path.

Proof.

(b) — (a) This is immediate from Lemma 16.5.

(a) — (c) Suppose there is an augmenting path wg, us, ..., u, with s = u
and t = u,,. Let

d = min{r(u;,u41) |0<i<n} > 0.

The quantity d is the smallest residual capacity along the augmenting path
and is called the bottleneck capacity. An edge along the augmenting path with
that capacity is called a bottleneck edge. Define the following flow ¢ in the
residual graph Gy:

g(ui,uip) = d, 0<i<n
g(uit1,u) = —d, 0<i<n
g(u,v) = 0, for all other pairs (u,v).
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Then g is a flow in Gy with value d. By Lemma 16.7, f + ¢ is a flow in G and
[f+gl=1f1+ gl = [f]+d

(c) — (b) Assume there is no augmenting path. Let A consist of all vertices
reachable from s by paths in the residual graph. Let B =V — A. There are
no edges in the residual graph from A to B; thus in G, all edges from A
to B are saturated, i.e. f(u,v) = ¢(u,v). It follows from Lemma 16.4 that
(4, B) = || 0
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