Theorem The dual matroid is a matroid.
Proof. Let $M=(S, \mathcal{J})$ be matroid. A basis of M is a maximal independent set in \mathcal{J}. The dual of M is $M^{*}=\left(S, \mathcal{J}^{*}\right)$, where

$$
\mathcal{J}^{*}=\{A \subseteq S \mid I \cap A=\varnothing \text { for some basis } I \text { of } M\}
$$

Note that $M^{* *}=M$ and that the bases of M^{*} are the complements of the bases of M. We show that M^{*} is a matroid. It is clearly closed downward under \subseteq, so we need only show

$$
\forall A, B \in \mathcal{J}^{*} \quad|A|<|B| \Rightarrow \exists x \in B-A \quad A \cup\{x\} \in \mathcal{J}^{*}
$$

Suppose $A, B \in \mathcal{J}^{*}$ and $|A|<|B|$. There exist bases I, J of M such that $A \cap J=\varnothing$ and $B \cap I=\varnothing$. Complete $I-A$ to a basis K of M by adding elements of J. Then $A \cap K=\varnothing$ and

$$
|K|=|K-I|+|K \cap I|=|K-I|+|I-A|=|K-I|+|I|-|I \cap A|,
$$

and $|K|=|I|$, so $|K-I|=|I \cap A|$ and

$$
|K \cap(B-A)| \leq|K-I|=|I \cap A| \leq|A-B|<|B-A| .
$$

There must exist $x \in(B-A)-K$, so $(A \cup\{x\}) \cap K=\varnothing$, which says that $A \cup\{x\} \in \mathcal{J}^{*}$.
Theorem Cuts in M are cycles in M^{*} and vice versa.
Proof. By duality, we only need to show one of the two statements.

$$
\begin{aligned}
A \text { is a cut of } M & \Leftrightarrow A \text { is a minimal set intersecting all bases } I \text { of } M \\
& \Leftrightarrow A \text { is a minimal set intersecting all } S-J \text { for bases } J \text { of } M^{*} \\
& \Leftrightarrow A \text { is a minimal set not contained in any basis } J \text { of } M^{*} \\
& \Leftrightarrow A \text { is a minimal dependent set in } M^{*} \\
& \Leftrightarrow A \text { is a cycle of } M^{*} .
\end{aligned}
$$

Corollary The blue (respectively, red) rule of M is the red (respectively, blue) rule of M^{*} with the order of the weights reversed.

