Lecture 33 Matrix Rank

Recall that the rank of an m X n matrix A over a field k£ is the maximum
number of linearly independent rows (or columns) of A. It is the dimension of
the image of the linear map k" — k™ defined by A; equivalently, it is n minus
the dimension of the kernel (the set of vectors in k™ annihilated by the map).

Once we have an NC' algorithm to calculate the rank of a matrix, the door
is opened for a wide variety of other NC' algorithms in linear algebra. For
example, to compute a basis for the vector space spanned by the columns of
some matrix, we can compute the ranks of all sets of columns {ci,...,¢},
1 <i < n, and add ¢; to the basis only if the rank of {cy, ..., ¢;} is one greater
than the rank of {¢y,...,¢;1}.

We will start with the algorithm of Ibarra, Moran, and Rosier [53], which
computes the rank of a matrix over the complex numbers C.

Recall the following lemma from the last lecture:

Lemma 33.1 Let C be an n x n matriz over any field. If rank C? = rank C,
then we can compute rank C' in NC' by computing the characteristic polynomial
det (x1 — C) and finding the highest power of x that divides it, say x®. Then
rank C' =n —d.

Let A be a matrix over C, not necessarily square. The conjugate transpose

of A, denoted ZT, is the transpose of A with every entry replaced by its
complex conjugate. Recall that the conjugate Z of a complex number z is
obtained by reflecting in the real axis: if z = a + ib, where a and b are real,
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then Z = a—ib. Note that the product 27 is always a nonnegative real number:
(a+4ib) - (a—ib) = a®+b*.

Let B=A A We will prove that A and B have the same rank; moreover,
rank B? = rank B and B is square, so Lemma 33.1 applies.
The matrix B is of a particularly nice form: it is Hermitian, which means

that B = B'. A Hermitian matrix is the complex analog of a symmetric
matrix.

Lemma 33.2 For any complex vector y € C*, yly = 0 iff y = 0.

Proof. If y = (a1, as, . .., ay) then

7y = (@1,a2,...,G,) - (a1, a9, ..., a,)

Now @; - a; is always a nonnegative real number, and it can only be zero if
a; = 0. The sum of nonnegative reals can only be zero if each term, and hence
each a;, is zero. O

Recall that the kernel of a linear map is the set of vectors that are mapped
to the origin. Thus if the linear map is represented by the matrix A, then

kerA = {ze€C"| Az =0}.

The rank of A is the dimension of the image of A, which is the same as
n — dimker A. The following lemma shows that it is sufficient to find the

dimension of the kernel of A" A.
Lemma 33.3 ker A = ker A’ A.

Proof.
(C) If x € ker A then Az = 0, which implies that A Az =0,
(D) Suppose = € ker A" A. Then

A Ar=0 — 774 Az =0
— (Ax)TAx =0
— Az =0 by Lemma 33.2.

Lemma 33.4 If B is Hermitian, then rank B = rank B2
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Proof. Tt suffices to show that the kernels of B and B? coincide. Surely
ker B C ker B2 Now suppose x € ker B?. Then

B>t =0 — 7'BBx=0
— 7B "Bz =0 because B is Hermitian, so B = B
— (B:L‘)TB:L‘ =0
— Bxr=0 by Lemma 33.2.

Therefore z € ker B. O

Putting all this together, here is the algorithm for computing the rank of A:
compute the square matrix B = ZTA, compute the characteristic polynomial
using Csanky or Chistov, and find the highest power z¢ of z that divides it.
The rank of A is n — d. As we have seen, all these steps can be performed in
NC.

33.1 Mulmuley’s Algorithm

For a complex matrix A, we showed that A, A' A, and (ZTA)2 all have the
same rank, thus we can apply Lemma 33.1 to the square Hermitian matrix
A" A. In the special case of real matrices, this says that 4, AT A, and (AT A)?
all have the same rank, and we can apply Lemma 33.1 to the symmetric matrix
AT A.

Unfortunately, this does not work for fields of finite characteristic. For
example, over the field Z;, (1,2) - (1,2) = 0; moreover, the matrix

4 = [;i] (45)

is symmetric and of rank 1, but ATA = A2 = 0.

This pathological state of affairs was partially resolved by Borodin, von
zur Gathen, and Hopcroft [15], who gave a probabilistic NC algorithm, and
Chistov [18] who gave a nonuniform deterministic algorithm. Mulmuley [82]
gave the first deterministic NC algorithm, which we describe here.

Mulmuley keeps inner products from vanishing by throwing in indetermi-
nates. The idea being exploited here is that even over fields of finite charac-
teristic, a polynomial expression in the indeterminate x vanishes if and only if
all its coefficients vanish; in other words, the indeterminate x is transcendental
over the field k£ (it is not the root of any polynomial with coefficients in k).
If not too many indeterminates are used and the degrees of the polynomials
involved are not too big, then the computations can still be done efficiently in
parallel, except that now we work symbolically, using polynomial arithmetic.

This may require another factor of n more processors, but can still be done in
NC.
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Officially, we will be working in the transcendental extension k(z) of k.
This is isomorphic to the field of rational functions over k described in Lecture
32. It is the smallest field that contains £ and the single indeterminate x, and
is unique up to isomorphism. The rational function p/q can be represented as
the pair of polynomials (p, ¢), and the operations + and - in k(x) can be done
using polynomial arithmetic on the numerators and denominators:

22+12 _ Dhe + paqa
qi q2 q192
pr P2 _ DD
QG ne

To test equality, we need to reduce these fractions to lowest terms by factoring
out the ged of the numerator and denominator, but this can be done in NC',
as will be shown in the next lecture.

To illustrate the technique, consider the matrix A of (45) over Z;. Instead
of working with A, we can work instead with the matrix X A, where x is an
indeterminate and

10
<= o2

10 1 2 1 2
X4 = l() x][2 4] N [2x 4x] '
The matrix X has entries in k(z) and is nonsingular, therefore X A has the
same rank as A. Moreover, the matrix

Then

(XA) = [1 2 r _ l 1+ 4o 2+3x]

2r dx 2r + 3% dx + 2?2

also has rank 1 (the second row is 2z times the first). Since (X A)?, X A4, and
A all have the same rank, we can apply Lemma 33.1 to X A and the problem
is solved.

This works in general. Let A be an m xn matrix, m > n, over an arbitrary
field k. We note that going from k to k(z) does not affect the rank of A, since
the rank of A is r iff A has a nonzero r X r minor (determinant of an r x r
submatrix), and this computation does not care whether we are over k or k(z).

We can assume without loss of generality that A is square and symmetric;
if not, we consider instead the square symmetric matrix

0 A

AT 0
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of size (m + n) x (m 4+ n), whose rank is exactly twice that of A.
Now assume A is n xn and symmetric. Let X be the n xn diagonal matrix
with 1,2, 22,...,2"! on the diagonal.

Lemma 33.5 (Mulmuley [82]) The matrices A, XA and (XA)? all have
the same rank.

Proof. Certainly
rank XAXA < rank XA < rankA4.

Since X is nonsingular, rank X AX A = rank AX A, therefore in order to show
that rank A < rank X AX A it suffices to show that rank A < rank AX A.
Assume for a contradiction that there is a vector u € k(x)™ such that Au # 0
but AX Au = 0. By multiplying through by the denominators of the elements
of u, we can assume without loss of generality that v = u(z) € k[z]. Let
v = Au and let u(y) be u(x) with z replaced by a new indeterminate y. Then

v(y) = Au(y) and
v(y) ' Xv(r) = u(y)"AXAu(z) = 0. (46)

But if d is the maximum degree of any element of v and ¢ is the maximum
index for which v, is of degree d, then the coefficient of y?z!~'z? is nonzero.
This can be seen by writing out v(y)” Xv(z) as a sum

v(y)' Xv(z) = Z v(y)ir v (z);

and noting that there is exactly one nonzero term in this expression with the
monomial y?x!~1x¢, which cannot be canceled. This contradicts (46). O



