
Lecture �� Matching

Matching refers to a class of problems with many important applications	 As�
signing instructors to courses or students to seminars with limited enrollment
are two examples of matching problems	

Formally� matching problems are expressed as problems on graphs	 We will
consider four di�erent versions� depending on whether the graph is bipartite
or not and whether the graph is weighted or unweighted	 The bipartite case
is considerably easier� so we will concentrate on that case	

De�nition ���� Given an undirected graph G $ �V�E� with edge weights
w� a matching is a subset M � E such that no two edges inM share a vertex	
The maximum�weight matching problem is to �nd a matchingM such that the
sum of the weights of the edges in M is maximum over all possible matchings	
If all the weights are �� then we get the unweighted matching problem� which
just asks for a matching of maximum cardinality	 �

De�nition ���� Given a matching M in G $ �V�E�� an edge e � E is
matched if e � M and free if e � E 
M 	 A vertex v is matched if v has an
incident matched edge� free otherwise	 �

De�nition ���	 A perfect matching is a matching in which every vertex is
matched	 �

De�nition ���� Given a matching M in G $ �V�E�� a path �cycle� in G is
an alternating path �cycle� with respect to the matchingM if it is simple �i�e��

���
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has no repeated vertices� and consists of alternating matched and free edges	
The length of a path or cycle p is the number of edges in p and is denoted jpj	
An alternating path is an augmenting path �with respect toM� if its endpoints
are free	 �

For example� consider the following graph	
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The solid edges form a maximum matching that is also a perfect matching	
The dashed edges form a maximal matching that is not maximum �it is maxi�
mal because it is not a proper subset of any other matching�	 With respect to
the dashed matching� the edges ����� and ����� are matched� the edges ������
������ and ����� are free� the vertices ������ and � are matched� and the vertices
� and � are free	 With respect to the dashed matching� the alternating path
����������� is an augmenting path	

Let � be the symmetric di�erence operator on sets


A� B $ �A � B�
 �A �B�

$ �A
 B� � �B 
 A� �

In other words� A�B is the set of elements that are in one of A or B� but not
both	 If M is a matching and p an augmenting path with respect to M � then
considering p as its set of edges� the set M � p is a matching of cardinality
jM j " �	 Note that M � p agrees with M on edges outside of p� and every
edge in p that is matched in M is unmatched in M � p and vice�versa	

The following early theorem of Berge ���� gives the foundation for an e��
cient matching algorithm	

Theorem ���� 
Berge ��
�� A matching M in a graph G is a maximum
matching if and only if there is no augmenting path in M �

This theorem follows immediately from the following enhanced version due
to Hopcroft and Karp ����	

Theorem ���� 
Hopcroft and Karp ����� If M is a matching in G� M�
is a maximum matching in G� and k $ jM�j 
 jM j� then with respect to M
there is a set of k vertex�disjoint augmenting paths� Moreover� at least one of
them has length at most n

k

 �� where n is the number of vertices in G�
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Proof� Consider M�M�	 No vertex can have more than one incident edge
from M or more than one incident edge from M�� so no vertex can have more
than two incident edges from M �M�	 The set M �M� therefore consists
of a collection of vertex�disjoint alternating paths and cycles� as illustrated	
Here the solid lines indicate edges of M and the dashed lines indicate edges
of M�	
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Each odd�length path p has either one more M edge than M� edge or one
more M� edge than M edge	 However� the former is impossible� since then
p would be an augmenting path with respect to M�� thus M� would not be
maximum	

Using the assumption that jM�j $ jM j" k�

jM� 
M j $ jM�j 
 jM� �M j
$ jM j 
 jM� �M j " k

$ jM 
M�j" k �

In other words there are exactly k more M� edges in M� �M than M edges	
The extra k M� edges must come from paths of odd length with one moreM�
edge than M edge	 Cycles and paths of even length have the same number
of M as M� edges� and as we have observed� there are no odd�length paths
with one more M than M� edge	 These k odd�length paths with one more
M� than M edge have endpoints that are free with respect to M � therefore
are augmenting paths in M 	

It is impossible for all of these paths to have length greater than n
k

 ��

because then we would have more than n vertices	 Therefore at least one of
the paths has length less than or equal to n

k

 �	 �

���� Weighted Matchings

De�nition ���� Let M be a matching in a graph G with edge weights w	
For any set A of edges� de�ne

w�A� $
X
e�A

w�e� �

De�ne the incremental weight '�p� of a set B of edges to be the total weight
of the unmatched edges in B minus the total weight of the matched edges in
B


'�B� $ w�B 
M�
 w�B �M� �

�
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If p is an augmenting path with respect to M � then '�p� is the net change in
the weight of the matching after augmenting by p


w�M � p� $ w�M� " '�p� � ����

Here is a good heuristic to use when selecting augmenting paths for max�
imum weight matching


Always use an augmenting path of maximum incremental weight	

Lemma ���� If M is a matching of size k that is of maximum weight among
all matchings of size k� and if p is an augmenting path with respect to M of
maximum incremental weight� then M � p is a matching of size k " � that is
of maximum weight among all matchings of size k " ��

Proof� By ����� it su�ces to show that if M � is a matching of maximum
weight among all matchings of size k " �� then there exists an augmenting
path p with respect to M such that

w�M �� $ w�M � p�

$ w�M� " '�p� �

Consider M�M �	 As before� this is a set of vertex�disjoint cycles� even�length
paths� and odd�length paths	 The incremental weight of each cycle must be
�� because otherwise it would be possible to exchange the M and M � edges
on this cycle to increase the weight of either M or M �� which by assumption
is impossible	 The even�length paths must have incremental weight � for the
same reason	 Thus only the odd�length paths in M �M � can have nonzero
weight	

Each odd�length path has either an extra M edge or an extra M � edge	
Since there is one more edge inM � than inM � there must be exactly one more
path with an extra M � edge than there are paths with an extra M edge	

Pair each path with an extra M edge with a path with an extra M � edge	
This will leave all paths paired except for one path p which has an extra M �

edge	 The incremental weight of each pair must be �� because otherwise it
would be possible to increase the weight of either M or M � by switching M
and M � edges in this pair	 Therefore

'�p� $ '�M �M ��

$ w�M ��
 w�M� �

The path p is an augmenting path with respect toM � and the matchingM�p
has k " � edges and weight equal to the weight of M �� therefore it too is of
maximum weight among all matchings of size k " �	 �
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In the next lecture we will show

Lemma ���� LetM� be a matching of maximum weight among all matchings
and let M be a matching of size k of maximum weight over all matchings of
size at most k� If w�M�� � w�M�� then M has an augmenting path with
respect to M of positive incremental weight�

Theorem ����
 If one always augments by an augmenting path of maximum
incremental weight� then one arrives at a matching of maximum weight after
at most n

�
steps�
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Let G be an undirected graph with weight function w	 Recall from last lecture
that the weight of a matchingM inG� denoted w�M�� is the sum of the weights
of the edges in M � and the incremental weight of a set A of edges� denoted
'�A�� is the sum of the weights of the unmatched edges in A less the sum of
the weights of the matched edges in A	 For an augmenting path p� '�p� gives
the net change in weight that would be obtained by augmenting by p	

We ended the last lecture by proving the following lemma


Lemma �
�� Let M be a matching of size k of maximum weight among all
matchings of size k� If we augment M by an augmenting path of maximum
incremental weight� then we obtain a matching of size k"� of maximum weight
among all matchings of size k " ��

We also need to know that an augmenting path of positive incremental weight
exists	 This is established in the following lemma	

Lemma �
�� Let M be a matching of size k of maximum weight among all
matchings of size at most k and let M� be a matching of maximum weight
among all matchings in G� If w�M�� � w�M�� then M has an augmenting
path of positive incremental weight�

Proof� Again� consider the symmetric di�erence M� �M 	 As argued in
the last lecture� this is a set of vertex�disjoint cycles and paths of alternating
edges from M and M�	 We pair the odd�length paths as we did in the last
lecture� with each pair consisting of one path with one more M than M� edge

���
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and the other with one more M� than M edge	 We are left with a number of
odd�length paths	

Each cycle and path of even length has incremental weight �� otherwise
the M and M� edges could be switched to increase the weight of either M
or M�� contradicting the maximality of M or M�	 By the same argument�
the incremental weights of the pairs of odd�length paths are �	 Thus we are
left with a set of unpaired odd�length paths	 Either all these paths have one
more M� edge than M edge or they all have one more M edge than M� edge
�otherwise there would be another pair�	 The latter is impossible� because then
M� would be a matching of greater weight and smaller cardinality than M �
contradicting our assumptions	 Thus all these unpaired paths are augmenting
paths with respect to M 	 If we augment by all of them simultaneously� we
achieve a maximum matching of weight w�M�� � w�M�� therefore� at least
one of them must have positive incremental weight	 �

Thus we can construct a maximum�weight matching by beginning with the
empty matching and repeatedly performing augmentations using augmenting
paths of maximum incremental weight until a maximum matching is achieved	
This takes at most n

�
augmentations� since the number of matched vertices

increases by two each time	 We will show below how to obtain augmenting
paths e�ciently in bipartite graphs	

���� Unweighted Bipartite Matching

Now we will see an O�m
p
n� algorithm of Hopcroft and Karp ���� for un�

weighted matching in bipartite graphs	 Micali and Vazirani ���� ���� have
given an algorithm of similar complexity for general graphs	

The idea underlying the algorithm of Hopcroft and Karp is similar to
Dinic�s idea for maximum �ow	 The algorithm proceeds in phases	 In each
phase� we �nd a maximal set of vertex�disjoint minimum�length augmenting
paths� and augment by them simultaneously	 In other words� we �nd a set S
of augmenting paths with the following properties


�i� if the minimum�length augmenting path is of length k� then all paths in
S are of length k�

�ii� no two paths in S share a vertex�

�iii� if p is any augmenting path of length k not in S� then p shares a vertex
with some path in S� i�e�� S is a setwise maximal set with the properties
�i� and �ii�	

We will need the following three lemmas


Lemma �
�	 A maximal set S of vertex�disjoint minimum�length augment�
ing paths can be found in time O�m��
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Lemma �
�� After each phase� the length of a minimum�length augmenting
path increases by at least two�

Lemma �
�� There are at most
p
n phases�

Proof of Lemma ����	 Let G $ �U� V� E� be the undirected bipartite graph
we are working in� and let M be a matching in G	 We will grow a �Hungarian
tree from G and M 	 Calling it a tree is somewhat misleading� since the
Hungarian tree is really a dag	 It is obtained in linear time by a procedure
similar to breadth��rst search	 We start with the free �unmatched� vertices
in U at level �	 Starting from an even level �k� the vertices at level �k " �
are obtained by following free �unmatched� edges from vertices at level �k	
Starting from an odd level �k " �� the vertices at level �k " � are obtained
by following matched edges from vertices at level �k " �	 Since the graph is
bipartite� the even levels contain only vertices in U and the odd levels contain
only vertices in V 	 We do not expand a vertex that has been seen at an earlier
level	

We continue building the Hungarian tree and adding more levels until all
vertices have been seen at least once before or until we encounter a free vertex
at an odd level �say t�	 In the latter case� every free vertex at level t is in V
and is the terminus of an augmenting path of minimum length	 Note that free
vertices in U can be encountered only at level �� since vertices at even levels
greater than � are matched	

Example �
�� The following �gure illustrates a bipartite graph with a par�
tial matching and its Hungarian tree	 The solid lines indicate matched edges
and the dashed lines free edges	
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Now we �nd a maximal set S of vertex�disjoint paths in the Hungarian
tree	 We will use a technique called topological erase� called so because it
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is reminiscent of the topological sort algorithm we saw in Lecture �	 With
each vertex x except those at level � we associate an integer counter initially
containing the number of edges entering x from the previous level	 Starting
at a free vertex v at the last level t� we trace a path back until arriving at a
free vertex u at level �	 This path is an augmenting path� and we include it
in S	 We then place all vertices along this path on a deletion queue	 As long
as the deletion queue is nonempty� we remove a vertex from the queue and
delete it and all incident edges from the Hungarian tree	 Whenever an edge
is deleted� the counter associated with its right endpoint is decremented	 If
the counter becomes �� the vertex is placed on the deletion queue �there can
be no augmenting path in the Hungarian tree through this vertex� since all
incoming edges have been deleted�	 After the queue becomes empty� if there
is still a free vertex v at level t� then there must be a path from v backwards
through the Hungarian tree to a free vertex on the �rst level� so we can repeat
the process	 We continue as long as there exist free vertices at level t	 The
entire process takes linear time� since the amount of work is proportional to
the number of edges deleted	 �

In order to prove Lemma ��	� we will use the following lemma


Lemma �
�� Let p be an augmenting path of minimum length with respect
to some matching M � let M � be the matching obtained by augmenting M by
p� and let q be an augmenting path in M �� Then

jqj � jpj" �jp � qj � ����

where jqj and jpj denote the number of edges of q and p� respectively� and p� q
denotes the set of edges common to p and q�

Proof of Lemma ����	 If q and p are vertex�disjoint� then q is also an
augmenting path with respect to M 	 Then jqj � jpj� since p is of minimum
length� and ���� holds since the intersection is empty	

Otherwise� consider the symmetric di�erence p � q of the two paths	 We
observe the following facts	

�i� All edges in q
p are in M if and only if they are in M �	 This is because
augmenting M by p only changes the status of edges on p	

�ii� Each time q joins �leaves� p it is immediately after �before� a free edge	
This is because each vertex in p already has one adjacent edge in p�M �	

�iii� The endpoints of q are not contained in p� since they are free in M �	

It follows from property �iii� that p � q contains exactly four free vertices
with respect to the original matching M � namely the endpoints of p and the
endpoints of q	 Thus p� q� considered with respect to M � consists of exactly
two augmenting paths and possibly some disjoint cycles as well	 Each of the
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two paths must be at least as long as p� since p was of minimum length� thus
jp� qj � �jpj	 But

jqj" jpj $ jp� qj" �jp � qj � �jpj" �jp � qj �

from which ���� follows	 �

Example �
�� Lemma ��	
 is illustrated in the following picture	
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In this example� the solid lines represent edges in M and the dashed lines rep�
resent edges not inM 	 The path p�� � � � � p�� is an augmenting path with respect
to the matchingM � and q�� � � � � q�� is an augmenting path after augmentingM
by p�� � � � � p��	 The paths p�� p�� p�� q�� q�� q� and q��� � � � � q�� p�� � � � � p�� are also
augmenting paths with respect toM 	 The path q
� � � � � q� forms an alternating
cycle with respect to M 	 �

Proof of Lemma ����	 Suppose that at some phase we augmented M by a
maximal set S of vertex�disjoint paths of minimum length k to obtain a new
matching M �	 Consider any augmenting path q with respect to M �	 If q is
vertex�disjoint from every path in S� then its length must be greater than k�
otherwise S was not maximal	 If on the other hand q shares a vertex with
p � S� then p � q contains at least one edge in M �� since every vertex in p is
matched in M �	 By Lemma ��	
� jqj exceeds jpj by at least two	 �

Proof of Lemma ����	 Let M� be a maximum matching and let M be
the matching obtained after �

�

p
n phases	 The length of any augmenting path

with respect to M is at least
p
n	 By a lemma from the last lecture� M� �M

contains a set T of exactly jM�j 
 jM j vertex�disjoint augmenting paths� and
augmenting by all of them gives a maximum matching	 But there can be
at most

p
n elements of T � otherwise they would account for more than n

vertices	 Thus jM�j 
 jM j � pn	 Since each phase increases the size of the
matching by at least one� at most

p
n more phases are needed	 �

Since each phase requires O�m� time and there are at most O�
p
n� phases�

the total running time of the algorithm is O�m
p
n�	




