
Lecture � Topological Sort and MST ��

��� Minimum Spanning Trees

Let G � �V�E� be a connected undirected graph�

De�nition ��� A forest in G is a subgraph F � �V�E �� with no cycles� Note
that F has the same vertex set as G� A spanning tree in G is a forest with
exactly one connected component� Given weights w � E � N �edges are
assigned weights over the natural numbers�� a minimum �weight� spanning
tree �MST� in G is a spanning tree T whose total weight �sum of the weights
of the edges in T � is minimum over all spanning trees� �

Lemma ��� Let F � �V�E� be an undirected graph� c the number of con�
nected components of F � m � jEj� and n � jV j� Then F has no cycles i�
c�m � n�

Proof�
��� By induction on m� If m � 
� then there are n vertices and each

forms a connected component� so c � n� If an edge is added without forming
a cycle� then it must join two components� Thus m is increased by � and c is
decreased by �� so the equation c �m � n is maintained�

��� Suppose that F has at least one cycle� Pick an arbitrary cycle and
remove an edge from that cycle� Then m decreases by �� but c and n remain
the same� Repeat until there are no more cycles� When done� the equation
c�m � n holds� by the preceding paragraph� but then it could not have held
originally� �

We use a greedy algorithm to produce a minimum weight spanning tree�
This algorithm is originally due to Kruskal 
����

Algorithm ��	 �Greedy Algorithm for MST�

�� Sort the edges by weight�

�� For each edge on the list in order of increasing weight� include that
edge in the spanning tree if it does not form a cycle with the edges
already taken� otherwise discard it�

The algorithm can be halted as soon as n	 � edges have been kept� since we
know we have a spanning tree by Lemma ����

Step � takes time O�m logm� � O�m logn� using any one of a number of
general sorting methods� but can be done faster in certain cases� for example
if the weights are small integers so that bucket sort can be used�

Later on� we will give an almost linear time implementation of step �� but
for now we will settle for O�n logn�� We will think of including an edge e in the
spanning tree as taking the union of two disjoint sets of vertices� namely the
vertices in the connected components of the two endpoints of e in the forest



�� Lecture � Topological Sort and MST

being built� We represent each connected component as a linked list� Each
list element points to the next element and has a back pointer to the head of
the list� Initially there are no edges� so we have n lists� each containing one
vertex� When a new edge �u� v� is encountered� we check whether it would
form a cycle� i�e� whether u and v are in the same connected component�
by comparing back pointers to see if u and v are on the same list� If not�
we add �u� v� to the spanning tree and take the union of the two connected
components by merging the two lists� Note that the lists are always disjoint�
so we don�t have to check for duplicates�

Checking whether u and v are in the same connected component takes
constant time� Each merge of two lists could take as much as linear time�
since we have to traverse one list and change the back pointers� and there
are n 	 � merges� this will give O�n�� if we are not careful� However� if we
maintain counters containing the size of each component and always merge
the smaller into the larger� then each vertex can have its back pointer changed
at most logn times� since each time the size of its component at least doubles�
If we charge the change of a back pointer to the vertex itself� then there are at
most logn changes per vertex� or at most n logn in all� Thus the total time
for all list merges is O�n logn��

��� The Blue and Red Rules

Here is a more general approach encompassing most of the known algorithms
for the MST problem� For details and references� see 
�

� Chapter ��� which
proves the correctness of the greedy algorithm as a special case of this more
general approach� In the next lecture� we will give an even more general
treatment�

Let G � �V�E� be an undirected connected graph with edge weights w �
E � N � Consider the following two rules for coloring the edges of G� which
Tarjan 
�

� calls the blue rule and the red rule�

Blue Rule
 Find a cut �a partition of V into two disjoint sets X and
V 	X� such that no blue edge crosses the cut� Pick an uncolored edge
of minimum weight between X and V 	X and color it blue�
Red Rule
 Find a cycle �a path in G starting and ending at the same
vertex� containing no red edge� Pick an uncolored edge of maximum
weight on that cycle and color it red�

The greedy algorithm is just a repeated application of a special case of the
blue rule� We will show next time�

Theorem ��� Starting with all edges uncolored� if the blue and red rules are
applied in arbitrary order until neither applies� then the �nal set of blue edges
forms a minimum spanning tree�


