
Lecture �	 Analysis of Lubys Algorithm

In the previous lecture we proved that for each good vertex v� the probability
that v is deleted in the current stage is at least �

�	
	 Recall that a vertex v is

good if

X
u�N�v�

�

�d�u�
� �

�
����

�intuitively� if it has lots of neighbors of low degree�� and that an edge is good
if it is incident to at least one good vertex	 Since the probability that a good
edge is deleted is at least as great as the probability that its good endpoint is
deleted �if both its endpoints are good� so much the better�� a good edge is
deleted with probability at least �

�	
	

Lemma 	��� At least half the edges in the graph are good�

Proof� Direct each edge toward its endpoint of higher degree� breaking ties
arbitrarily	 Then each bad vertex has at least twice as many edges going out
as coming in� since if not then at least a third of the vertices adjacent to v
would have degree d�v� or lower� and this would imply ����	

Using this fact� we can assign to each bad edge e directed into a bad
vertex v a pair of edges �bad or good� directed out of v so that each bad edge
is assigned a unique pair	 This implies that there are at least twice as many
edges in all as bad edges	 Equivalently� at least half the edges are good	 �

��



��� Lecture 	� Analysis of Luby�s Algorithm

We can now argue that the expected number of edges removed at a given
stage is at least a constant fraction of the number of edges present	

Theorem 	��� Let the random variable X represent the number of edges
deleted in the current stage� Then

EX � jEj
�

�

Proof� Let G denote the set of good edges	 For e � E� de�ne the random
variable

Xe $



� � if e is deleted
� � otherwise	

Then X $
P

e�EXe� and by linearity of expectation�

EX $
X
e�E
EXe

� X
e�G
EXe

� X
e�G

�

��
�by Lemma ��	��

$
jGj
��

� jEj
�

�by Lemma �	��	

�

We have shown that we can expect to delete at least a �xed fraction of
the remaining edges at each stage	 This implies that the expected number
of stages required until all m edges are deleted is O�logm�	 We leave this
argument as a homework exercise �Homework ��� Exercise ��	

���� Making Luby�s Algorithm Deterministic

As described in the last lecture� each stage of Luby�s algorithm makes n in�
dependent calls on a random number generator� one for each vertex	 We can
think of the call for vertex u as a �ip of a biased coin with Pr�heads� $ �

�d�u�

and Pr�tails� $ � 
 �
�d�u�

	 It can be shown that ��n� truly random bits �in�

dependent �ips of a fair coin� are necessary to generate these n independent
biased coin �ips	

However� a quick check reveals that the analysis of Luby�s algorithm never
used the independence of the biased coin �ips� but only the weaker condition



Lecture 	� Analysis of Luby�s Algorithm ���

of pairwise independence	 Recall from the last lecture that a collection of
events A are independent if for all subsets B � A�

Pr�
�B� $

Y
A�B

Pr�A� �

for pairwise independence� this only has to hold for subsets B of size two	
After observing that only pairwise independence was necessary for the

analysis� Luby made the beautiful observation that only O�logn� truly random
bits are needed to generate the n pairwise independent biased coin �ips	 This
leads to a deterministic NC algorithm
 in parallel� consider all possible bit
strings of length O�logn� representing all possible outcomes of O�logn� �ips
of a fair coin �there are only �O�logn� $ nO��� of them�	 Use each such bit string
to generate the n pairwise independent biased coin �ips as if that string were
obtained from a random number generator� and carry on with the algorithm	
Since we expect to delete at least a constant fraction of the edges� one of
the deterministic simulations must delete at least that many edges	 Pick the
one that discards the most edges and throw the other parallel computations
out� then repeat the whole process	 Everything is deterministic and at least
a constant fraction of the edges are removed at each stage	

Here is how to simulate the n pairwise independent biased coin �ips with
O�logn� independent fair coin �ips	 Let p be a prime number in the range n
to �n �such a prime exists by Bertrand�s postulate� see ���� p	 �����	 Assume
the vertices of the graph are elements of the �nite �eld Zp	 For each vertex
u� let au be an integer in the range � � au � p such that the fraction au

p
is as

close as possible to the desired bias �
�d�u�

	 �We will not get the exact bias �
�d�u�

�

but only the approximation au
p
	 This will be close enough for our analysis	�

Let Au be any subset of Zp of size au	 To simulate the biased coin �ips�
choose elements x and y uniformly at random from Zp and calculate x"uy in
Zp for each vertex u	 Declare the �ip for vertex u to be heads if x" uy � Au�
tails otherwise	

Note that the random selection of x and y� since they are chosen with
uniform probability from a set of size p� requires � log p $ O�logn� truly
random bits	

For each z� y � Zp� there is exactly one x � Zp such that x " uy $ z�
namely x $ z 
 uy	 Using this fact at the critical step� we calculate the
probability of heads for the vertex u


Pr�x " uy � Au� $
�

p�
jf�x� y� j x" uy � Augj

$
�

p�
X
z�Au
jf�x� y� j x" uy $ zgj

$
�

p�
X
z�Au

p



��� Lecture 	� Analysis of Luby�s Algorithm

$
au
p

�

Finally� we show pairwise independence	 For any u� v� z� w � Zp� u �$ v�
there is exactly one solution x� y to the linear system�

� u
� v

�
�
�
x
y

�
$

�
z
w

�

over Zp� since the matrix is nonsingular	 Thus

Pr�x" uy � Au � x " vy � Av�

$
�

p�
jf�x� y� j x" uy � Au � x" vy � Avgj

$
�

p�
X
z�Au

X
w�Av

jf�x� y� j x" uy $ z � x" vy $ wgj

$
�

p�
X
z�Au

X
w�Av

�

$
auav
p�

$ Pr�x" uy � Au� � Pr�x" vy � Av� �

We have seen how to generate up to p pairwise independent events with only
� log p truly random bits	 A generalization of this technique allows us to
generate up to p d�wise independent events with only d log p truly random
bits
 pick x�� � � � � xd�� � Zp uniformly at random� the uth event is

x� " x�u" x�u
� " � � �" xd��ud�� � Au �

The analysis of this generalization is left as an exercise �Homework ��� Exercise
��	


