Lecture 37 Analysis of Luby’s Algorithm

In the previous lecture we proved that for each good vertex v, the probability
that v is deleted in the current stage is at least %. Recall that a vertex v is
good if

(60)

|

(intuitively, if it has lots of neighbors of low degree), and that an edge is good
if it is incident to at least one good vertex. Since the probability that a good
edge is deleted is at least as great as the probability that its good endpoint is
deleted (if both its endpoints are good, so much the better), a good edge is
deleted with probability at least %.

Lemma 37.1 At least half the edges in the graph are good.

Proof. Direct each edge toward its endpoint of higher degree, breaking ties
arbitrarily. Then each bad vertex has at least twice as many edges going out
as coming in, since if not then at least a third of the vertices adjacent to v
would have degree d(v) or lower, and this would imply (60).

Using this fact, we can assign to each bad edge e directed into a bad
vertex v a pair of edges (bad or good) directed out of v so that each bad edge
is assigned a unique pair. This implies that there are at least twice as many
edges in all as bad edges. Equivalently, at least half the edges are good. O

197

198 LECTURE 37 ANALYSIS OF LUBY’S ALGORITHM

We can now argue that the expected number of edges removed at a given
stage is at least a constant fraction of the number of edges present.

Theorem 37.2 Let the random variable X represent the number of edges
deleted in the current stage. Then

B
EX > L.
- 7

Proof. Let GG denote the set of good edges. For e € E, define the random
variable

Y — 1, if eis deleted
¢« 0, otherwise.

Then X =3 ,.p X, and by linearity of expectation,

EX = Y €X,
ecE

> Y EX.
ecG

1
> — (by Lemma 36.3)
eceG 36

1G]
36
|E]
72

Y

Y

(by Lemma 37.1).

O

We have shown that we can expect to delete at least a fixed fraction of
the remaining edges at each stage. This implies that the expected number
of stages required until all m edges are deleted is O(logm). We leave this
argument as a homework exercise (Homework 10, Exercise 1).

37.1 Making Luby’s Algorithm Deterministic

As described in the last lecture, each stage of Luby’s algorithm makes n in-
dependent calls on a random number generator, one for each vertex. We can
think of the call for vertex u as a flip of a biased coin with Pr(heads) = 5 d%u)
and Pr(tails) = 1 — T%u)' It can be shown that Q(n) truly random bits (in-
dependent flips of a fair coin) are necessary to generate these n independent
biased coin flips.

However, a quick check reveals that the analysis of Luby’s algorithm never

used the independence of the biased coin flips, but only the weaker condition

LECTURE 37 ANALYSIS OF LUBY’S ALGORITHM 199

of pairwise independence. Recall from the last lecture that a collection of
events A are independent if for all subsets B C A,

r(1B) =]I Pr(4);

AeB

for pairwise independence, this only has to hold for subsets B of size two.

After observing that only pairwise independence was necessary for the
analysis, Luby made the beautiful observation that only O(logn) truly random
bits are needed to generate the n pairwise independent biased coin flips. This
leads to a deterministic NC' algorithm: in parallel, consider all possible bit
strings of length O(logn) representing all possible outcomes of O(logn) flips
of a fair coin (there are only 200°¢™) = nO(1) of them). Use each such bit string
to generate the n pairwise independent biased coin flips as if that string were
obtained from a random number generator, and carry on with the algorithm.
Since we expect to delete at least a constant fraction of the edges, one of
the deterministic simulations must delete at least that many edges. Pick the
one that discards the most edges and throw the other parallel computations
out, then repeat the whole process. Everything is deterministic and at least
a constant fraction of the edges are removed at each stage.

Here is how to simulate the n pairwise independent biased coin flips with
O(logn) independent fair coin flips. Let p be a prime number in the range n
to 2n (such a prime exists by Bertrand’s postulate; see [49, p. 343]). Assume
the vertices of the graph are elements of the finite field Z,. For each vertex
u, let a, be an integer in the range 0 < a, < p such that the fraction “; is as

close as possible to the desired bias 5 (. (We will not get the exact bias 3 (L
but only the approximation 2«. This will be close enough for our analysis.)

Let A, be any subset of Z of size a,. To simulate the biased coin flips,
choose elements x and y unlformly at random from Z, and calculate z +uy in
Z, for each vertex u. Declare the flip for vertex u to be heads if z +uy € A,,
tails otherwise.

Note that the random selection of x and y, since they are chosen with
uniform probability from a set of size p, requires 2logp = O(logn) truly
random bits.

For each z,y € Z,, there is exactly one x € Z, such that x + uy = z,
namely x = z — uy. Using this fact at the critical step, we calculate the
probability of heads for the vertex wu:

Priz +uy e Ay) = — {(z9) [z +uy € Aj|

> H@y) |z +uy =2z}

ZEAu

>op

ZEAu

| | |

200 LECTURE 37 ANALYSIS OF LUBY’S ALGORITHM

Ay,
p.

Finally, we show pairwise independence. For any u,v,z,w € Z,, u # v,
there is exactly one solution x,y to the linear system

L w| | . z
1 v y| | w
over Z,, since the matrix is nonsingular. Thus

Pr(z +uy € A, ANz +vy € A)
= s H@y) lz+uyeAunz+oye A}

= = > Y K@y |e+uy=zAz+vy=w}

2
D" jcA, wea,

- Ly s
ey ey
Ay
p?

= Pr(zr+uyeA,) Pr(x+ovyeA,).

We have seen how to generate up to p pairwise independent events with only
2logp truly random bits. A generalization of this technique allows us to
generate up to p d-wise independent events with only dlogp truly random
bits: pick xg,...,Tq 1 € Z, uniformly at random; the u™ event is

d—1

o+ vu+ voul 4+ -+ g utt € A,

The analysis of this generalization is left as an exercise (Homework 10, Exercise
2).

