Lecture 36 Luby's Algorithm

In this lecture and the next we develop a probabilistic $N C$ algorithm of Luby for finding a maximal independent set in an undirected graph. Recall that a set of vertices of a graph is independent if the induced subgraph on those vertices has no edges. A maximal independent set is one contained in no larger independent set. A maximal independent set need not be of maximum cardinality among all independent sets in the graph.

There is a simple deterministic polynomial-time algorithm for finding a maximal independent set in a graph: just start with an arbitrary vertex and keep adding vertices until all remaining vertices are connected to at least one vertex already taken. Luby [76] and independently Alon, Babai, and Itai [6] showed that the problem is in random $N C(R N C)$, which means that there is a parallel algorithm using polynomially many processors that can make calls on a random number generator such that the expected running time is polylogarithmic in the size of the input.

The problem is also in (deterministic) $N C$. This was first shown by Karp and Wigderson [59]. Luby [76] also gives a deterministic $N C$ algorithm, but his approach has a decidedly different flavor: he gives a probabilistic algorithm first, then develops a general technique for converting probabilistic algorithms to deterministic ones under certain conditions. We will see how to do this in the next lecture.

Luby's algorithm is a good vehicle for discussing probabilistic algorithms, since it illustrates several of the most common concepts used in the analysis of such algorithms:

Law of Sum. The law of sum says that if \mathcal{A} is a collection of pairwise disjoint events, i.e. if $A \cap B=\emptyset$ for all $A, B \in \mathcal{A}, A \neq B$, then the probability that at least one of the events in \mathcal{A} occurs is the sum of the probabilities:

$$
\operatorname{Pr}(\bigcup \mathcal{A})=\sum_{A \in \mathcal{A}} \operatorname{Pr}(A)
$$

Expectation. The expected value $\mathcal{E} X$ of a discrete random variable X is the weighted sum of its possible values, each weighted by the probability that X takes on that value:

$$
\mathcal{E} X=\sum_{n} n \cdot \operatorname{Pr}(X=n)
$$

For example, consider the toss of a coin. Let

$$
X= \begin{cases}1, & \text { if the coin turns up heads } \tag{57}\\ 0, & \text { otherwise }\end{cases}
$$

Then $\mathcal{E} X=\frac{1}{2}$ if the coin is unbiased. This is the expected number of heads in one flip. Any function $f(X)$ of a discrete random variable X is a random variable with expectation

$$
\begin{aligned}
\mathcal{E} f(X) & =\sum_{n} n \cdot \operatorname{Pr}(f(X)=n) \\
& =\sum_{m} f(m) \cdot \operatorname{Pr}(X=m) .
\end{aligned}
$$

It follows immediately from the definition that the expectation function \mathcal{E} is linear. For example, if X_{i} are the random variables (57) associated with n coin flips, then

$$
\mathcal{E}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\mathcal{E} X_{1}+\mathcal{E} X_{2}+\cdots+\mathcal{E} X_{n}
$$

and this gives the expected number of heads in n flips. The X_{i} need not be independent; in fact, they might all be the same flip.

Conditional Probability and Conditional Expectation. The conditional probability $\operatorname{Pr}(A \mid B)$ is the probability that event A occurs given that event B occurs. Formally,

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

The conditional probability is undefined if $\operatorname{Pr}(B)=0$.
The conditional expectation $\mathcal{E}(X \mid B)$ is the expected value of the random variable X given that event B occurs. Formally,

$$
\mathcal{E}(X \mid B)=\sum_{n} n \cdot \operatorname{Pr}(X=n \mid B)
$$

If the event B is that another random variable Y takes on a particular value m, then we get a real-valued function $\mathcal{E}(X \mid Y=m)$ of m. Composing this function with the random variable Y itself, we get a new random variable, denoted $\mathcal{E}(X \mid Y)$, which is a function of the random variable Y. The random variable $\mathcal{E}(X \mid Y)$ takes on value n with probability

$$
\sum_{\mathcal{E}(X \mid Y=m)=n} \operatorname{Pr}(Y=m)
$$

where the sum is over all m such that $\mathcal{E}(X \mid Y=m)=n$. The expected value of $\mathcal{E}(X \mid Y)$ is just $\mathcal{E} X$:

$$
\begin{align*}
\mathcal{E}(\mathcal{E}(X \mid Y)) & =\sum_{m} \mathcal{E}(X \mid Y=m) \cdot \operatorname{Pr}(Y=m) \\
& =\sum_{m} \sum_{n} n \cdot \operatorname{Pr}(X=n \mid Y=m) \cdot \operatorname{Pr}(Y=m) \\
& =\sum_{n} n \cdot \sum_{m} \operatorname{Pr}(X=n \wedge Y=m) \tag{58}\\
& =\sum_{n} n \cdot \operatorname{Pr}(X=n) \\
& =\mathcal{E} X
\end{align*}
$$

(see [33, p. 223]).
Independence and Pairwise Independence. A set of events \mathcal{A} are independent if for any subset $\mathcal{B} \subseteq \mathcal{A}$,

$$
\operatorname{Pr}(\bigcap \mathcal{B})=\prod_{A \in \mathcal{B}} \operatorname{Pr}(A)
$$

They are pairwise independent if for every $A, B \in \mathcal{A}, A \neq B$,

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

For example, the probability that two successive flips of a fair coin both come up heads is $\frac{1}{4}$. Pairwise independent events need not be independent: consider the three events

- the first flip gives heads
- the second flip gives heads
- of the two flips, one is heads and one is tails.

The probability of each pair is $\frac{1}{4}$, but the three cannot happen simultaneously.
If A and B are independent, then $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A)$.

Inclusion-Exclusion Principle. It follows from the law of sum that for any events A and B, disjoint or not,

$$
\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)
$$

More generally, for any collection \mathcal{A} of events,

$$
\operatorname{Pr}(\bigcup \mathcal{A})
$$

This equation is often used to estimate the probability of a join of several events. The first term alone gives an upper bound and the first two terms give a lower bound:

$$
\begin{aligned}
\operatorname{Pr}(\bigcup \mathcal{A}) & \leq \sum_{A \in \mathcal{A}} \operatorname{Pr}(A) \\
\operatorname{Pr}(\bigcup \mathcal{A}) & \geq \sum_{A \in \mathcal{A}} \operatorname{Pr}(A)-\sum_{\substack{A, B \in \mathcal{A} \\
A \neq B}} \operatorname{Pr}(A \cap B)
\end{aligned}
$$

36.1 Luby's Maximal Independent Set Algorithm

Luby's algorithm is executed in stages. Each stage finds an independent set I in parallel, using calls on a random number generator. The set I, the set $N(I)$ of neighbors of I, and all edges incident to $I \cup N(I)$ are deleted from the graph. The process is repeated until the graph is empty. The final maximal independent set is the union of all the independent sets I found in each stage. We will show that the expected number of edges deleted in each stage is at least a constant fraction of the edges remaining; this will imply that the expected number of stages is $O(\log n)$ (Homework 10, Exercise 1).

If v is a vertex and A a set of vertices, define

$$
\begin{aligned}
N(v) & =\{u \mid(u, v) \in E\}=\{\text { neighbors of } v\} \\
N(A) & =\bigcup_{u \in A} N(u)=\{\text { neighbors of } A\} \\
d(v) & =\text { the degree of } v=|N(v)|
\end{aligned}
$$

Here is the algorithm to find I in each stage.

Algorithm 36.1

1. Create a set S of candidates for I as follows. For each vertex v in parallel, include $v \in S$ with probability $\frac{1}{2 d(v)}$.
2. For each edge in E, if both its endpoints are in S, discard the one of lower degree; ties are resolved arbitrarily (say by vertex number). The resulting set is I.

Note that in step 1 we favor vertices with low degree and in step 2 we favor vertices of high degree.

Define a vertex to be good if

$$
\sum_{u \in N(v)} \frac{1}{2 d(u)} \geq \frac{1}{6}
$$

Intuitively, a vertex is good if it has lots of neighbors of low degree. This will give it a decent chance of making it into $N(I)$. Define an edge to be good if at least one of its endpoints is good. A vertex or edge is bad if it is not good. We will show that at least half of the edges are good, and each stands a decent chance of being deleted, so we will expect to delete a reasonable fraction of the good edges in each stage.

Lemma 36.2 For all $v, \operatorname{Pr}(v \in I) \geq \frac{1}{4 d(v)}$.
Proof. Let $L(v)=\{u \in N(v) \mid d(u) \geq d(v)\}$. If $v \in S$, then v does not make it into I only if some element of $L(v)$ is also in S. Then

$$
\begin{aligned}
\operatorname{Pr}(v \notin I \mid v \in S) & \leq \operatorname{Pr}(\exists u \in L(v) \cap S \mid v \in S) \\
& \leq \sum_{u \in L(v)} \operatorname{Pr}(u \in S \mid v \in S) \\
& =\sum_{u \in L(v)} \operatorname{Pr}(u \in S) \quad \text { (by pairwise independence) } \\
& \leq \sum_{u \in L(v)} \frac{1}{2 d(u)} \\
& \leq \sum_{u \in L(v)} \frac{1}{2 d(v)} \quad(\text { since } d(u) \geq d(v)) \\
& \leq \frac{d(v)}{2 d(v)}=\frac{1}{2} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\operatorname{Pr}(v \in I) & =\operatorname{Pr}(v \in I \mid v \in S) \cdot \operatorname{Pr}(v \in S) \\
& \geq \frac{1}{2} \cdot \frac{1}{2 d(v)}=\frac{1}{4 d(v)}
\end{aligned}
$$

Lemma 36.3 If v is good, then $\operatorname{Pr}(v \in N(I)) \geq \frac{1}{36}$.
Proof. If v has a neighbor u of degree 2 or less, then

$$
\begin{aligned}
\operatorname{Pr}(v \in N(I)) & \geq \operatorname{Pr}(u \in I) \\
& \geq \frac{1}{4 d(u)} \quad \text { (by Lemma 36.2) } \\
& \geq \frac{1}{8}
\end{aligned}
$$

Otherwise $d(u) \geq 3$ for all $u \in N(v)$. Then for all $u \in N(v), \frac{1}{2 d(u)} \leq \frac{1}{6}$, and since v is good,

$$
\sum_{u \in N(v)} \frac{1}{2 d(u)} \geq \frac{1}{6}
$$

There must exist a subset $M(v) \subseteq N(v)$ such that

$$
\begin{equation*}
\frac{1}{6} \leq \sum_{u \in M(v)} \frac{1}{2 d(u)} \leq \frac{1}{3} \tag{59}
\end{equation*}
$$

Then

$$
\begin{aligned}
\operatorname{Pr}(v \in N(I)) \geq & \operatorname{Pr}(\exists u \in M(v) \cap I) \\
\geq & \sum_{u \in M(v)} \operatorname{Pr}(u \in I)-\sum_{\substack{u, w \in M(v) \\
u \neq w}} \operatorname{Pr}(u \in I \wedge w \in I) \\
& \geq \sum_{u \in M(v)} \frac{1}{4 d(u)}-\sum_{\substack{u, w \in M(v) \\
u \neq w}} \operatorname{Pr}(u \in S \wedge w \in S) \\
\geq & \sum_{u \in M(v)} \frac{1}{4 d(u)}-\sum_{\substack{u, w \in M(v) \\
u \neq w}} \operatorname{Pr}(u \in S) \cdot \operatorname{Pr}(w \in S) \\
& (\text { by pairwise independence }) \\
= & \sum_{u \in M(v)} \frac{1}{4 d(u)}-\sum_{u \in M(v)} \sum_{w \in M(v)} \frac{1}{2 d(u)} \cdot \frac{1}{2 d(w)} \\
= & \left(\sum_{u \in M(v)} \frac{1}{2 d(u)}\right) \cdot\left(\frac{1}{2}-\sum_{w \in M(v)} \frac{1}{2 d(w)}\right) \\
\geq & \frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} \text { by }(59) .
\end{aligned}
$$

We will continue the analysis of Luby's algorithm in the next lecture.

