Lecture 36 Luby’s Algorithm

In this lecture and the next we develop a probabilistic NC' algorithm of Luby
for finding a maximal independent set in an undirected graph. Recall that
a set of vertices of a graph is independent if the induced subgraph on those
vertices has no edges. A maximal independent set is one contained in no
larger independent set. A maximal independent set need not be of maximum
cardinality among all independent sets in the graph.

There is a simple deterministic polynomial-time algorithm for finding a
maximal independent set in a graph: just start with an arbitrary vertex and
keep adding vertices until all remaining vertices are connected to at least one
vertex already taken. Luby [76] and independently Alon, Babai, and Itai [6]
showed that the problem is in random NC (RNC'), which means that there
is a parallel algorithm using polynomially many processors that can make
calls on a random number generator such that the expected running time is
polylogarithmic in the size of the input.

The problem is also in (deterministic) NC. This was first shown by Karp
and Wigderson [59]. Luby [76] also gives a deterministic NC' algorithm, but
his approach has a decidedly different flavor: he gives a probabilistic algorithm
first, then develops a general technique for converting probabilistic algorithms
to deterministic ones under certain conditions. We will see how to do this in
the next lecture.

Luby’s algorithm is a good vehicle for discussing probabilistic algorithms,
since it illustrates several of the most common concepts used in the analysis
of such algorithms:

191

192 LECTURE 36 LuUBY’S ALGORITHM

Law of Sum. The law of sum says that if A is a collection of pairwise
disjoint events, i.e. if ANB = () for all A, B € A, A # B, then the probability
that at least one of the events in A occurs is the sum of the probabilities:

rJA4) = X Pr(4)

AeA

Expectation. The ezpected value £X of a discrete random variable X is the
weighted sum of its possible values, each weighted by the probability that X
takes on that value:

> n-Pr(X =n).
For example, consider the toss of a coin. Let

Y - { 1, if the coin turns up heads (57)

0, otherwise.

Then £X = % if the coin is unbiased. This is the expected number of heads
in one flip. Any function f(X) of a discrete random variable X is a random
variable with expectation

Ef(X) = Zn'Pr(f(X)Zn)
= Zf -Pr(X =m) .

It follows immediately from the definition that the expectation function &£
is linear. For example, if X; are the random variables (57) associated with n
coin flips, then

EXi+Xo+--+X,) = EX1+EXe+---+EX,,

and this gives the expected number of heads in n flips. The X; need not be
independent; in fact, they might all be the same flip.

Conditional Probability and Conditional Expectation. The condi-
tional probability Pr(A | B) is the probability that event A occurs given that
event B occurs. Formally,

Pr(AN B)
Pr(B)
The conditional probability is undefined if Pr(B) = 0.

The conditional expectation E(X | B) is the expected value of the random
variable X given that event B occurs. Formally,

Pr(A|B) =

E(X | B) Zn Pr(X=n|B).

LECTURE 36 LUBY’S ALGORITHM 193

If the event B is that another random variable Y takes on a particular
value m, then we get a real-valued function £(X | Y = m) of m. Composing
this function with the random variable Y itself, we get a new random variable,
denoted £(X | Y), which is a function of the random variable Y. The random
variable £(X | Y) takes on value n with probability

> Pr(Y=m),

E(X|Y=m)=n

where the sum is over all m such that £(X | Y = m) = n. The expected value
of E(X |Y) is just £EX:

EEXIY)) = LEX Y =m)-Pr(y =m)
= S S n-Pr(X =n|Y =m)-Pr(Y =m)
= g:nn-ZPr(X:n/\Y:m) (58)
- énﬁ(xzn)
= £X

(see [33, p. 223)).

Independence and Pairwise Independence. A set of events A are in-
dependent if for any subset B C A,

Pr((B) =]J Pr(4).

AeB
They are pairwise independent if for every A, B € A, A # B,
Pr(ANnB) = Pr(A)- -Pr(B).

For example, the probability that two successive flips of a fair coin both come
up heads is i. Pairwise independent events need not be independent: consider
the three events

e the first flip gives heads
e the second flip gives heads
e of the two flips, one is heads and one is tails.

The probability of each pair is i, but the three cannot happen simultaneously.
If A and B are independent, then Pr(A | B) = Pr(A).

194 LECTURE 36 LuUBY’S ALGORITHM

Inclusion-Exclusion Principle. It follows from the law of sum that for
any events A and B, disjoint or not,

Pr(AUB) = Pr(A)+Pr(B)—-Pr(ANB).
More generally, for any collection A of events,

Pr(UJA)
= > Pr(A) - > Pr(\B)+ > Pr(\B)—---£Pr([A) .

AcA BC A BCA
|B] =2 |B] =3
This equation is often used to estimate the probability of a join of several
events. The first term alone gives an upper bound and the first two terms give
a lower bound:

Pr(JA) < ¥ Pr(A)

AeA
Pr(lJA) > AE%P?"(A) —) ; APr(A N B) .

A+B

36.1 Luby’s Maximal Independent Set Algorithm

Luby’s algorithm is executed in stages. Each stage finds an independent set
I in parallel, using calls on a random number generator. The set I, the set
N(I) of neighbors of I, and all edges incident to I UN(I) are deleted from the
graph. The process is repeated until the graph is empty. The final maximal
independent set is the union of all the independent sets I found in each stage.
We will show that the expected number of edges deleted in each stage is at least
a constant fraction of the edges remaining; this will imply that the expected
number of stages is O(logn) (Homework 10, Exercise 1).
If v is a vertex and A a set of vertices, define

N(@w) = {u|(u,v) € E} = {neighbors of v}
N(4) = |J N(u) = {neighbors of A}

ucA
d(v) = the degree of v = |N(v)|.

Here is the algorithm to find I in each stage.

Algorithm 36.1

1. Create a set S of candidates for I as follows. For each vertex v in
parallel, include v € S with probability %.

2. For each edge in F| if both its endpoints are in S, discard the one of
lower degree; ties are resolved arbitrarily (say by vertex number).
The resulting set is I.

LECTURE 36 LUBY’S ALGORITHM 195

Note that in step 1 we favor vertices with low degree and in step 2 we favor
vertices of high degree.
Define a vertex to be good if

>

uEN (v)

1 S l
2d(u) — 6

Intuitively, a vertex is good if it has lots of neighbors of low degree. This will
give it a decent chance of making it into N(I). Define an edge to be good if at
least one of its endpoints is good. A vertex or edge is bad if it is not good. We
will show that at least half of the edges are good, and each stands a decent
chance of being deleted, so we will expect to delete a reasonable fraction of
the good edges in each stage.

Lemma 36.2 For all v, Pr(v € I) > —+

=~
S

~
<

7
Proof. Let L(v) = {u € N(v) | d(u) > d(v)}. If v € S, then v does not
make it into I only if some element of L(v) is also in S. Then
Progl|veS) < Pr(BueLv)NnS|veSs)
< Y PrlueS|ved)

ueL(v)
= Y Pr(ueS) (by pairwise independence)
u€L(v)
< Y !
B ueL(v) Qd(u)
1
< Y (since d(u) > d(v))
ueL(v) 2d(U)
_) 1
— 2d(v) 2

Now

Pr(vel) = Pr(vel|veS)-Pr(vebs)
1 1 1
2 2d(v) Ad(v) -

Lemma 36.3 If v is good, then Pr(v € N(I)) > 4.
Proof. If v has a neighbor u of degree 2 or less, then
Pr(ve N(I)) > Pr(uel)
>) (by Lemma 36.2)

v

196 LECTURE 36 LuUBY’S ALGORITHM

Otherwise d(u) > 3 for all w € N(v). Then for all u € N(v), 2d(7 < £, and
since v is good,
1 1
2. > 2
weN () 2d(u) — 6
There must exist a subset M (v) C N(v) such that
1 1 1
- o< < - (59)
6 wedl(v) 2d(u) 3
Then
Pr(v e N(I)) > Pr(Jue M(v)NI)
> 3 Pruel)— > PrluelAwel)
uwEM (v) u,w € M(v)
u #w
(by inclusion-exclusion)
1
>y > Prue SAweS)
ueM (v 4d() u,w € M(v)
u # w
1
>y Free > Pr(ueS)-Pr(weSs)
w€EM (v) 4 (u) u,w € M(v)
U F£ w
(by pairwise independence)
> D
ueEM (v) 4d(u uw€EM (v) weM(v) d(u) 2d(w)
1 1 1
= (X) 5— X 5)
ueM(v) 2d(u)” "2 weM(v) 2d(w)
11
> Z.2 = by (59
Z 25 5 v (59)
O

We will continue the analysis of Luby’s algorithm in the next lecture.

