Lecture 34 Linear Equations and Polynomial GCDs

It is still open whether one can find the greatest common divisor (gcd) of two integers in $N C$. In this lecture we will show how to compute the gcd of two polynomials in $N C$. We essentially reduce the problem to linear algebra. First we show how to solve systems of linear equations in $N C$; then we reduce the polynomial gcd problem to such a linear system.

34.1 Systems of Linear Equations

We are given a system of m linear equations in n unknowns

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \vdots \tag{47}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{align*}
$$

and wish to find a solution vector x_{1}, \ldots, x_{n} if one exists. This is equivalent to solving the matrix-vector equation

$$
\begin{equation*}
A x=b \tag{48}
\end{equation*}
$$

where A is an $m \times n$ matrix whose $i j^{\text {th }}$ element is $a_{i j}, x$ is a column vector of n unknowns, and b is an m-vector whose $i^{\text {th }}$ element is b_{i}.

We have already seen how to solve the following problems in $N C$:

- compute the rank of a matrix;
- find a maximal linearly independent set of columns of a matrix;
- invert a nonsingular square matrix.

The last allows us to solve the system (47) if A is square and nonsingular. What about cases where the system is not square, or where it is square but A is singular?

If we just wish to determine whether the system (48) has a solution at all, we can append b to A as a new column and ask whether this matrix has the same rank as A. If so, then b can be expressed as a linear combination of the columns of A; the coefficients of this linear combination provide a solution x to (48). If not, then b lies outside the subspace spanned by the columns of A and no such solution exists.

The following $N C$ algorithm will produce a solution to (48) if one exists. First we can assume without loss of generality that A is of full column rank; that is, the columns are linearly independent. If not, we can find a maximal linearly independent set A^{\prime} of columns of A; if b can be expressed as a linear combination of columns of A, then it can be expressed as a linear combination of the columns of A^{\prime}, and any solution to $A^{\prime} x=b$ gives a solution to (48) by extending the solution vector with zeros.

Assume now that A is of full column rank. Using the same technique, we can find a maximal linearly independent set of rows. Since the row rank and column rank of a matrix are equal, the resulting matrix $A^{\prime \prime}$ is square and nonsingular, so the system $A^{\prime \prime} x=b^{\prime \prime}$ has a unique solution, where $b^{\prime \prime}$ is obtained from b by dropping the same rows as were dropped from A to get $A^{\prime \prime}$. Either x is also a solution to (48), or no solution exists.

34.2 Resultants and Polynomial GCDs

Suppose we are given two polynomials

$$
\begin{aligned}
f(x) & =a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0} \\
g(x) & =b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}
\end{aligned}
$$

and wish to find their gcd. The usual sequential method is the Euclidean algorithm, which generates a sequence of polynomials

$$
f_{0}, f_{1}, \ldots, f_{n}
$$

where $f_{0}=f, f_{1}=g$, and f_{i+1} is the remainder obtained when dividing f_{i-1} by f_{i}. In other words, f_{i+1} is the unique polynomial of degree less than the degree of f_{i} for which there exists a quotient q_{i} such that

$$
\begin{equation*}
f_{i-1}=q_{i} f_{i}+f_{i+1} \tag{49}
\end{equation*}
$$

This sequence is called the Euclidean remainder sequence. It must end, since the degrees of the f_{i} decrease strictly. The last nonzero polynomial f_{n} in the list is the ged of f and g. This is proved by showing that a polynomial divides f_{i-1} and f_{i} iff it divides f_{i} and f_{i+1}, which is immediate from (49). It follows that all adjacent pairs f_{i}, f_{i+1} in the sequence have the same gcd. Since $f_{n+1}=0, f_{n}$ divides f_{n-1}, therefore $\operatorname{gcd}\left(f_{n}, f_{n-1}\right)=f_{n}$ and $\operatorname{gcd}(f, g)=f_{n}$ as well.

One can obtain an $N C$ algorithm using the classical Sylvester resultant [17, 15]. This technique is based on the following relationship:

Lemma 34.1

(i) There exist polynomials s and t with $\operatorname{deg} s<\operatorname{deg} g$ and $\operatorname{deg} t<\operatorname{deg} f$ such that $\operatorname{gcd}(f, g)=s f+t g$.
(ii) For any polynomials s and $t, \operatorname{gcd}(f, g)$ divides $s f+t g$.

Proof.
(i) The proof is by backwards induction on n. For the basis, take $s=0$ and $t=1$. Then $\operatorname{deg} s=-1<\operatorname{deg} f_{n}(\operatorname{deg} 0=-1$ by convention), $\operatorname{deg} t=0<\operatorname{deg} f_{n-1}$, and $s f_{n-1}+t f_{n}=f_{n}$. For the induction step, assume there exist s and t with $\operatorname{deg} s<\operatorname{deg} f_{i+1}, \operatorname{deg} t<\operatorname{deg} f_{i}$, and $s f_{i}+t f_{i+1}=f_{n}$. Using (49), we have

$$
\begin{aligned}
f_{n} & =s f_{i}+t f_{i+1} \\
& =s f_{i}+t\left(f_{i-1}-q_{i} f_{i}\right) \\
& =t f_{i-1}+\left(s-q_{i}\right) f_{i} .
\end{aligned}
$$

Moreover, since $\operatorname{deg} q_{i}=\operatorname{deg} f_{i-1}-\operatorname{deg} f_{i}$, we have that $\operatorname{deg} t<\operatorname{deg} f_{i}$ and $\operatorname{deg}\left(s-q_{i}\right)<\operatorname{deg} f_{i-1}$.
(ii) Certainly gcd (f, g) divides f and g. It therefore divides any $s f+t g$.

Using Lemma 34.1, we can express the polynomial gcd problem as a problem in linear algebra. Arrange the coefficients of f and g in staggered columns to form a square matrix S as in the following figure, with $n=\operatorname{deg} g$ columns of coefficients of f and $m=\operatorname{deg} f$ columns of coefficients of g. The figure
illustrates the case $m=5$ and $n=4$.

$$
S=\underbrace{\left[\begin{array}{ccccccccc}
a_{5} & 0 & 0 & 0 & b_{4} & 0 & 0 & 0 & 0 \tag{50}\\
a_{4} & a_{5} & 0 & 0 & b_{3} & b_{4} & 0 & 0 & 0 \\
a_{3} & a_{4} & a_{5} & 0 & b_{2} & b_{3} & b_{4} & 0 & 0 \\
a_{2} & a_{3} & a_{4} & a_{5} & b_{1} & b_{2} & b_{3} & b_{4} & 0 \\
a_{1} & a_{2} & a_{3} & a_{4} & b_{0} & b_{1} & b_{2} & b_{3} & b_{4} \\
a_{0} & a_{1} & a_{2} & a_{3} & 0 & b_{0} & b_{1} & b_{2} & b_{3} \\
0 & a_{0} & a_{1} & a_{2} & 0 & 0 & b_{0} & b_{1} & b_{2} \\
0 & 0 & a_{0} & a_{1} & 0 & 0 & 0 & b_{0} & b_{1} \\
0 & 0 & 0 & a_{0} & 0 & 0 & 0 & 0 & b_{0}
\end{array}\right]}_{n} \underbrace{}_{m}
$$

The matrix S is called the Sylvester matrix of f and g. If we multiply S on the right by a column vector

$$
x=\left(s_{n-1}, s_{n-2}, \ldots, s_{0}, t_{m-1}, t_{m-2}, \ldots, t_{0}\right)^{T}
$$

containing the coefficients of polynomials s and t of degree at most $n-1$ and $m-1$, respectively, then the product $S x$ gives the coefficients of the polynomial $s f+t g$, which is of degree at most $m+n-1$.

Theorem 34.2 The matrix S is nonsingular if and only if the gcd of f and g is 1 .

Proof.

(\rightarrow) Suppose $\operatorname{gcd}(f, g) \neq 1$. Then $\operatorname{deg} \operatorname{gcd}(f, g)>0$. By Lemma 34.1(ii), there exist no s and t with $s f+t g=1$, therefore the system $S x=(0, \ldots, 0,1)^{T}$ has no solution.
(\leftarrow) Suppose S is singular. Then there exists some nonzero vector x such that $S x=0$. This says there exists some pair of polynomials s, t such that $s f+t g=0, \operatorname{deg} s<\operatorname{deg} g$, and $\operatorname{deg} t<\operatorname{deg} f$. Then $s f=-t g$ and $\operatorname{deg} s f=\operatorname{deg} t g<\operatorname{deg} f g$. Since f and g both divide $s f=-t g$, so does their least common multiple (lcm), thus $\operatorname{deg} \mathrm{lcm}(f, g)<\operatorname{deg} f g$. Since $\operatorname{gcd}(f, g) \cdot \operatorname{lcm}(f, g)=f g$,

$$
\operatorname{deg} \operatorname{gcd}(f, g)=\operatorname{deg} f g-\operatorname{deg} \operatorname{lcm}(f, g)>0
$$

therefore $\operatorname{gcd}(f, g) \neq 1$.
By Theorem 34.2, we can determine whether the polynomials f and g have a nontrivial gcd by computing the determinant of S. This quantity is called the resultant of f and g.

Let us now show how to compute the gcd. Suppose

$$
\operatorname{gcd}(f, g)=x^{d}+c_{d-1} x^{d-1}+c_{d-2} x^{d-2}+\cdots+c_{1} x+c_{0}
$$

assuming without loss of generality that the leading coefficient is 1 . Let c be the column vector

$$
c=\left(0,0, \ldots, 0,1, c_{d-1}, c_{d-2}, \ldots, c_{1}, c_{0}\right)^{T}
$$

By Lemma 34.1(i), $S x=c$ for some x. For any e, let $S^{(e)}$ be the matrix obtained by dropping the last e rows of S, and let $c^{(e)}$ be the vector obtained by dropping the last e elements of c. Let $u^{(e)}$ be the vector of the form $(0,0, \ldots, 0,1)^{T}$ of length $m+n-e$. Note that $c^{(d)}=u^{(d)}$, where d is the degree of $\operatorname{gcd}(f, g)$. Since $S x=c$, we have

$$
\begin{equation*}
S^{(d)} x=u^{(d)}=c^{(d)} \tag{51}
\end{equation*}
$$

Moreover, for no $e<d$ does

$$
\begin{equation*}
S^{(e)} x=u^{(e)} \tag{52}
\end{equation*}
$$

have a solution; if it did, then $S x$ would give a polynomial $s f+t g$ of degree strictly less than the degree of $\operatorname{gcd}(f, g)$, contradicting Lemma 34.1(ii). We can thus find the degree d of $\operatorname{gcd}(f, g)$ by trying all e in parallel and taking d to be the least e such that (52) has a solution. Once we have found d and a solution x for (51), we are done: the solution vector x is also a solution to $S x=c$, thereby giving coefficients of polynomials s and t such that

$$
\operatorname{gcd}(f, g)=s f+t g=S x
$$

It is interesting to note that the traditional Euclidean algorithm for polynomial gcd amounts to triangulation of the Sylvester matrix (50) by Gaussian elimination.

