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In this lecture we show that any LP maximization problem and its dual

maximize cTx minimize yT b

subject to Ax ≤ b, x ≥ 0 subject to yTA ≥ cT , y ≥ 0
(1)

have the same optimal value.

1 Slack Variables

The LP maximization problem and its dual above can be converted to an equivalent LP with
equality constraints by adding slack variables. Suppose A ∈ Rm×n, c ∈ Rn, and b ∈ Rm. For
each constraint ai1x1 + · · · + ainxn ≤ bi corresponding to the ith row of A, we add a slack
variable wi and replace the constraint with ai1x1 + · · · + ainxn + wi = bi and wi ≥ 0. After
this conversion, the LP and its dual are:

maximize [c0]T [xw] minimize yT b

subject to [AI][xw] = b, [xw] ≥ 0 subject to yT [AI] ≥ [c0]T
(2)

where

• [c0] denotes the vector c followed by m zeros,

• [xw] denotes the vector consisting of the n original variables x followed by the m slack
variables w, and

• [AI] denotes the m × (n + m) matrix obtained by concatenating A with an m × m
identity matrix on the right.

Note that cTx = [c0]T [xw], so the primal objective function is unchanged, and the dual
constraints yTA ≥ cT and y ≥ 0 are now both captured by yT [AI] ≥ [c0]T .

We will give the geometric intuition behind this later.

2 Optimization vs Decision

We can also turn an optimization LP into a decision problem by imposing a new constraint
on the objective function. The problem then becomes a question of the feasibility of the new
set of constraints.
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3 Farkas’s Lemma

Having equality constraints and feasibility versions of our LPs will allow us to apply Farkas’s
lemma, which is the core of the strong duality result. We will state Farkas’s lemma and give
the geometric intuition behind it, followed by a proof sketch.

Lemma 3.1 (Farkas’s lemma (1902)). Let A ∈ Rm×n and b ∈ Rm. Exactly one of the
following two systems is feasible:

Ax = b, x ≥ 0 yTA ≥ 0, yT b < 0. (3)

The formal statement of Farkas’s lemma may seem a bit mysterious, but here is the
geometric intuition behind it. Consider the columns of A as a collection of n vectors in Rm.

0

The set of all nonegative linear combinations of these vectors is the set {Ax | x ≥ 0}.
Geometrically, this forms a closed convex set in Rm, which we will call the positive cone
generated by the vectors. To say that the system Ax = b, x ≥ 0 is feasible says that b lies
in this positive cone.

b

0

If the system is not feasible, then b lies outside the cone. In this case, it can be shown that
there exists a hyperplane that separates b from the cone.

b

0
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A hyperplane in Rm is subspace of dimension m − 1 consisting of all vectors orthogonal to
some vector y. It partitions Rm into three disjoint regions distinguished by the inner product
with y. The inner product of two nonzero vectors is positive, negative, or zero according as
the angle between them is acute (less than π/2), obtuse (greater than π/2), or right (exactly
π/2), respectively. The points z for which yT z > 0 lie on the same side of the hyperplane as
y and those for which yT z < 0 lie on the opposite side.

y

0 yT z > 0

yT z = 0

yT z < 0

A feasible point y of the system yTA ≥ 0, yT b < 0 determines such a hyperplane. The
condition yTA ≥ 0 says that the columns of A form acute or right angles with y, therefore lie
on the same side of the hyperplane as y or on the hyperplane itself. It is easily shown that
this is also true of all elements in the positive cone they generate. The condition yT b < 0
says that b forms an obtuse angle with y, therefore lies on the opposite side.

To prove Farkas’s lemma, we need to show that exactly one of the systems (3) is feasible.
Certainly they cannot both be feasible, because then we would have yTAx = yT b < 0 and
yTAx ≥ 0, a contradiction.

To show that at least one is feasible, suppose the left-hand system of (3) is not feasible.
Then b lies outside the positive cone generated by the columns of A. Now we wish to
construct a hyperplane separating b from this positive cone.

In fact, it is it possible to construct an affine hyperplane (a hyperplane perhaps translated
away from the origin) separating any nonempty closed convex set C ⊆ Rm from any point
b ̸∈ C. We use the Weierstrass extreme value theorem, which states that a continuous real-
valued function f on a compact (closed and bounded) subset of Rm achieves a minimum
value; that is, there exists a point x ∈ C such that

f(x) = inf
z∈C

f(z).

Let v ∈ C be arbitrary. Applying this theorem to the continuous function ∥b − x∥ on the
closed and bounded set C ∩ {x | ∥b − x∥ ≤ ∥b − v∥}, we see that there is a point x ∈ C
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minimizing the distance to b.

b x

C

In fact, the point x is unique, although we do not need to know that for our application.

The vector y = x− b is the desired normal vector. In general we would have to translate
the hyperplane {z | yT z = 0} so the resulting affine hyperplane {z | yT (z − x) = 0} would
contain x, but it turns out that in our application this is not necessary, as the hyperplane
already contains x.

b x

C

{z | yT (z − x) = 0}

Let us show that the hyperplane separates C from b. Let x′ ∈ C be arbitrary. For any ε > 0,
since C is convex, εx′ + (1− ε)x ∈ C. Using the fact that ∥c+ d∥2 = ∥c∥2 + ∥d∥2 + 2cTd,

∥y∥2 = ∥x− b∥2

≤ ∥(εx′ + (1− ε)x)− b∥2 = ∥x− b+ ε(x′ − x)∥2 = ∥y + ε(x′ − x)∥2

= ∥y∥2 + ∥ε(x′ − x)∥2 + 2yT ε(x′ − x)

= ∥y∥2 + ε2∥x′ − x∥2 + 2yT ε(x′ − x),

so

yT (x′ − x) ≥ −ε

2
∥x′ − x∥2,

and taking the limit as ε → 0 gives yT (x′ − x) ≥ 0. But since both 0 and 2x lie in C,

− yTx = yT (0− x) ≥ 0 yTx = yT (2x− x) ≥ 0,

therefore yTx = 0, so yTx′ ≥ 0. As for b, we have yT b = yT (b− x) = −yTy < 0.
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4 Strong Duality

Now we can give a geometric interpretation to the construction of (2) from (1) in §1. To
say that there exists an x such that Ax ≤ b and x ≥ 0 says that there is a point c in the
positive cone {Ax | x ≥ 0} such that c ≤ b; in other words, there is a point c in the positive
cone and a further nonnegative vector z such that c+ z = b. This is the same as adding the
unit standard basis vectors to the columns of A to get [AI] and asking whether b is in the
positive cone generated by the columns of [AI]. That is the system (2).

To show the strong duality result, we start with the primal and dual systems (1). We
know from weak duality that max cTx ≤ min yT b. To show that they are equal, we show that
for any d, if max cTx < d, then min yT b < d as well. That is, if the maximization problem
with the extra constraint cTx ≥ d is infeasible, then min yT b < d.

Let us assume that the system Ax ≤ b, x ≥ 0 is feasible and add the extra constraint
cTx ≥ d, or equivalently, −cTx ≤ −d. This can be represented by taking A′ to be A with
the extra row −cT , b′ to be b with the extra element −d, and taking the constraints to be
A′x ≤ b′.

Now we add slack variables w as in §1 to get a system with equality constraints

[A′I][xw] = b′ [xw] ≥ 0.

If this system is infeasible, Farkas’s lemma says that there exist a vector of m values y and
a scalar z such that

[yz]T [A′I] ≥ 0 [yz]T b′ < 0,

where [yz] is the vector y with z appended. Equivalently,

yTA− zcT ≥ 0 y, z ≥ 0 yT b− zd < 0.

It cannot be that z = 0, because otherwise yTA ≥ 0, y ≥ 0, yT b < 0 would be feasible, which
would mean that the system Ax ≤ b, x ≥ 0 would be infeasible by Farkas’s lemma. But this
contradicts our assumption. Thus z > 0. We have

yTA ≥ zcT y, z ≥ 0 yT b < zd.

Let y/z be the vector y scaled by the value z. Then

(y/z)TA ≥ cT y/z ≥ 0 (y/z)T b < d,

so we have a witness that the minimum value of the right-hand system of (1) is less than d.
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