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1 Weighted Set Cover via LP Dual Fitting

Weighted vertex cover is a special case of the weighted set cover problem. We have previously
seen an approximation algorithm for weighted set cover, where the approximation ratio
involved the function

H(m) =
m∑
j=1

1

j
≤ 1 + ln(m). (1)

We have run into the function H before, in the analysis of random treaps. In this lecture we
show how this result can be obtained by an analysis technique known as LP dual fitting.

Recall that in the weighted set cover problem, we are given a set U of n elements along
with a set S of subsets of U with nonegative weights w : S → R+ such that

⋃
S = U ; that

is, the union of all the sets in S covers U . The goal is to choose a subcollection I ⊆ S of
minimum total weight

∑
S∈IwS such that

⋃
I = U . The decision version of this problem is

NP-complete.

Recall that our greedy approximation algorithm chooses sets according to a “minimum
weight per new element covered” heuristic. The algorithm constructs I inductively according
to this heuristic. The variable T keeps track of the set of elements not yet covered by

⋃
I.

Algorithm 1 Greedy algorithm for set cover

1: Initialize I← ∅ and T ← U
2: while T ̸= ∅ do
3: S ← argminS{w(S)/|T ∩ S| | S ∈ S, T ∩ S ̸= ∅}
4: I← I ∪ {S}
5: T ← T \ S
6: end while
7: return I

Line 3 greedily selects the set minimizing the added weight per new element covered.
This quantity might be called the cost-effectiveness of the set.

It is clear that the algorithm can be implemented in polynomial time and produces a
valid set cover. We wish to show that it achieves an approximation ratio of α, where

α = H(max
S∈S
|S|),
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where the function H is defined in (1).

To analyze the approximation ratio, we will use the LP relaxation of set cover and its
dual.

minimize
∑

S∈S wSxS

subject to
∑

j∈S xS ≥ 1 for j ∈ U

xS ≥ 0 for S ∈ S

(2)

maximize
∑

j∈U yj

subject to
∑

j∈S yj ≤ wS for S ∈ S

yj ≥ 0 for j ∈ U.

(3)

It will be helpful to add some extra lines to the program that do not influence the choice
of sets to put into I, but merely record some extra data relevant to the analysis. Specifically,
we compute a vector z indexed by elements of U . The vector z is not a feasible solution of
the dual LP, but at the end we will scale it down by a factor of α to obtain y = z/α that
is feasible for the dual LP. The scale factor α will be an upper bound on the approximation
ratio. This method is sometimes called dual fitting.

Algorithm 2 Greedy algorithm for set cover

1: Initialize I← ∅ and T ← U
2: while T ̸= ∅ do
3: S ← argminS{wS/|T ∩ S| | S ∈ S, T ∩ S ̸= ∅}
4: I← I ∪ {S}
5: for j ∈ T ∩ S do
6: zj ← wS/|T ∩ S|
7: end for
8: T ← T \ S
9: end while
10: y ← z/α
11: return I

The following loop invariant is easily shown to hold initially and to be preserved by the
body of the while loop: ∑

j∈U

zj =
∑
S∈I

wS.

Also, note that each zj is assigned exactly once in line 6, at the time when j becomes covered.
The weight of the set S chosen in line 3 is apportioned equally among all the new points
covered, and the value assigned to zj is the portion borne by j.
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We will show below (Lemma 1) that the vector y created in line 10 is feasible for the
dual LP (3). From this it follows that the approximation ratio is bounded above by α:∑

S∈I

wS =
∑
j∈U

zj = α
∑
j∈U

yj ≤ α
∑

S∈OPT

wS,

where the last line follows from weak duality.

Lemma 1. The vector y computed in line 10 of Algorithm 2 is feasible for the dual linear
program (3).

Proof. Clearly yj ≥ 0 for all j, so we only need to show that
∑

j∈S yj ≤ wS for every set S;
equivalently, ∑

j∈S

zj ≤ αwS

for every set S. Let m = |S| and denote the elements of S by s0, s1, . . . , sm−1, where the
numbering corresponds to the order in which nonzero values were assigned to the variables
zsj in line 6. This is also the order in which the elements were first covered by a set chosen
in line 3.

At the time s0 was covered and the value zs0 assigned, all of the elements of S still
belonged to T . At that time, the cost-effectiveness of S (weight of S divided by number of
new elements that would be covered by choosing S) was judged to be wS/m. The algorithm
chose a set with the same or better cost-effectiveness, and zs0 was set equal to the cost-
effectiveness of the chosen set; thus

zs0 ≤
wS

m
. (4)

In general, for any k < m, at the time sk was covered and the value zsk assigned, all of
the elements sk, sk+1, . . . , sm−1 still belonged to T . At that time, the cost-effectiveness of S
was judged to be at most wS/(m − k). The algorithm chose a set with the same or better
cost-effectiveness, and zsk was set to the cost-effectiveness of the chosen set; thus

zsk ≤
wS

m− k
. (5)

Summing the bounds (5) for k = 0, . . . ,m− 1, we see that∑
j∈S

zj ≤
(

1

m
+

1

m− 1
+ · · ·+ 1

2
+ 1

)
wS = H(m)wS ≤ αwS,

as desired.
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