
Analysis of Algorithms LP-Based Approximation
CS6820 Fall 2022 Monday, November 28, 2022

1 Linear Programming

Linear programming (LP) is the problem of optimizing (minimizing or maximizing) a linear
objective function subject to linear constraints. A linear program with m constraints and n
variables is defined by vectors b ∈ Rm and c ∈ Rn, a vector x of n variables ranging over R,
and an m× n matrix A ∈ Rm×n. The LP is

minimize cTx
subject to Ax ≥ b and x ≥ 0.

Here we are thinking of the vectors as column vectors, and the superscript T refers to the
transpose (making a row vector out of a column vector). The expressions cTx and Ax refer
to ordinary inner product and matrix-vector multiplication, respectively.

This is the standard form of an LP minimization problem. One could formulate a more
general version without the constraints x ≥ 0, but any such system can be transformed to
the standard form without loss of generality.

The constraints define a closed polyhedron in Rn. This polyhedron is called the feasible
region of the LP, and the LP is called feasible if the feasible region is nonempty; that is, if
constraints have any solution at all.

Let us call this the primal LP. Associated with the primal LP is a dual LP involving a
vector y of m real variables:

maximize bTy
subject to ATy ≤ c and y ≥ 0

or equivalently,

maximize yT b
subject to yTA ≤ cT and y ≥ 0.

The feasible region of the dual LP is a polyhedron in Rm. Note that the dual is a maximiza-
tion problem and the inequalities ATy ≤ c go in the other direction. The dual of the dual is
the original primal.

Lemma 1 (Weak Duality). If x and y are points in the feasible regions of the primal and
dual LPs, respectively, then yT b ≤ cTx; that is, the value of the dual objective function at
any feasible point y is a lower bound on the value of the primal objective function at any
feasible point x.

Proof. Let x and y be any points in the feasible regions of the primal and dual LPs, respec-
tively. Since Ax ≥ b and y ≥ 0, we have yTAx ≥ yT b. Since yTA ≤ cT and x ≥ 0, we have

1



yTAx ≤ cTx. Putting these together, yT b ≤ yTAx ≤ cTx.

It follows from weak duality that if the primal LP is feasible, then it has an optimal
solution if the dual LP is feasible, since the values of the primal objective function are
bounded below and the feasible region of the primal LP is closed. Similarly, if the dual LP
is feasible, then it has an optimal solution if the primal LP is feasible.

Lemma 2 (Strong Duality). If both the primal and dual LPs are feasible, then their optimal
values are equal.

We will skip the proof of this lemma, as it is quite difficult. Some slides with a proof
outline can be found here. The max flow-min cut theorem of network flow theory is an
example of linear programming duality.

If we require integer solutions to a given linear program, the problem is called integer
programming and is NP-complete. However, there are polynomial-time algorithms for linear
programming without this restriction, the ellipsoid algorithm due to Khatchian [3] and the
interior point method due to Karmarkar [2]. The much older simplex method, due to Dantzig
[1], is exponential in the worst case but tends to work well in practice.

2 LP-Based Approximation Algorithms

Linear programming is an extremely versatile technique for designing approximation al-
gorithms for NP-complete problems, because it is one of the most general and expressive
problems that we know how to solve in polynomial time. In the next few lectures we will
discuss some applications of linear programming to the design and analysis of approximation
algorithms.

2.1 LP Rounding Algorithm for Weighted Vertex Cover

In an undirected graph G = (V,E), if S ⊆ V is a set of vertices and e is an edge, we say
that S covers e if at least one endpoint of e belongs to S. We say that S is a vertex cover
if it covers every edge. In the weighted vertex cover problem, one is given an undirected
graph G = (V,E) and a weight function w : V → R+, and one must find a vertex cover of
minimum total weight.

We can express the weighted vertex cover problem as an integer program by using decision
variables xv for all v ∈ V that encode whether v ∈ S. For any set S ⊆ V we can define a
vector x, with components indexed by vertices of G, by specifying that

xv =

{
1, if v ∈ S,

0, otherwise.

2

https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/LinearProgrammingII.pdf


The set S is a vertex cover if and only if the constraint xu + xv ≥ 1 is satisfied for every
edge (u, v) ∈ E. Conversely, if x ∈ {0, 1}V satisfies xu + xv ≥ 1 for every (u, v) ∈ E, then
S = {v | xv = 1} is a vertex cover. Thus, the weighted vertex cover problem can be expressed
as the following integer program.

minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for e = (u, v) ∈ E

xv ∈ {0, 1} for v ∈ V

(1)

To design an approximation algorithm for weighted vertex cover, we will transform this
integer program into a linear program by relaxing the constraint xv ∈ {0, 1} to allow the
variables xv to take fractional values.

minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for e = (u, v) ∈ E

xv ≥ 0 for v ∈ V

(2)

It may seem more natural to replace the constraint xv ∈ {0, 1} with xv ∈ [0, 1] rather than
xv ≥ 0, but it does not matter; an optimal solution of the linear program will never assign
any of the variables xv a value strictly greater than 1, as the value of any such variable
could always be reduced to 1 without violating any constraints and would only improve the
objective function

∑
v wvxv. Thus, writing the constraint as xv ≥ 0 rather than xv ∈ [0, 1]

is without loss of generality.

It is possible that a fractional solution of (2) can achieve a strictly lower weight than any
integer solution. For example, let G be a 3-cycle with vertices u, v, w, each having weight 1.
Then the vector x = (1

2
, 1
2
, 1
2
) satisfies all of the constraints of (2) and the objective function

evaluates to 3
2
at x; in fact, this is the optimal solution. In contrast, the minimum weight of

a vertex cover is 2.

We can solve the linear program (2) in polynomial time, but as we have just seen, the
optimal solution may be fractional. In that case, we need to figure out how to post-process
the fractional solution to obtain an actual vertex cover. In this case, the natural idea of
rounding to the nearest integer works. Let x be an optimal solution of the linear program
(2) and define

x̃v =

{
1, if xv ≥ 1

2
,

0, otherwise.
(3)

Let S = {v | x̃v = 1}. Then S is a vertex cover, because for every edge (u, v), the constraint
xu + xv ≥ 1 implies that at least one of xu, xv is at least 1/2, so at least one of x̃u, x̃v is 1.

Finally, to analyze the approximation ratio, we observe that the rounding rule (3) has
the property that for all v,

x̃v ≤ 2xv.

3



Letting S denote the vertex cover chosen by our LP rounding algorithm, and letting OPT
denote the optimum vertex cover, we have∑

v∈S

wv =
∑
v∈V

wvx̃v ≤ 2
∑
v∈V

wvxv ≤ 2
∑

v∈OPT

wv,

where the final inequality holds because the fractional optimum of the linear program (2)
must be less than or equal to the optimum of the integer program (1) because its feasible
region is at least as big.

2.2 Primal-Dual Algorithm for Weighted Vertex Cover

The algorithm presented in the preceding section runs in polynomial time and outputs a
vertex cover whose weight is at most twice the optimal weight, a fact that we express by
saying that its approximation factor (or approximation ratio) is 2.

However, the algorithm needs to solve a linear program. Although this can be done in
polynomial time, there are much faster ways to compute a vertex cover with approximation
factor 2 without solving a linear program. One such algorithm, which we present in this
section, is a primal-dual approximation algorithm, meaning that it makes choices guided by
the linear program (2) and its dual but does not actually solve them to optimality.

Let us write the linear programming relaxation of weighted vertex cover once again, along
with its dual.

minimize
∑

v∈V wvxv

subject to xu + xv ≥ 1 for e = (u, v) ∈ E

xv ≥ 0 for v ∈ V

(4)

maximize
∑

e∈E ye

subject to
∑

e∈δ(v) ye ≤ wv for v ∈ V

ye ≥ 0 for e = E

(5)

Here, the notation δ(v) denotes the set of all edges having v as an endpoint. One can
interpret the dual LP variable ye as prices associated to the edges, and one can interpret
wv as the wealth of vertex v. The dual constraint

∑
e∈δ(v) ye ≤ wv asserts that v has enough

wealth to pay for all of the edges incident to it. If edge prices satisfy all the constraints
of (5) then every vertex has enough wealth to pay for its incident edges, and consequently
every vertex set S has enough combined wealth to pay for all of the edges covered by S. In
particular, if S is a vertex cover, then the combined wealth of the vertices in S must be at
least

∑
e∈E ye, which is a manifestation of weak duality : if

∑
v∈V wvxv is the optimum calue

of the primal LP, then ∑
e∈E

ye ≤
∑
v∈V

wvxv ≤
∑

v∈OPT

wv,

4



that is, the optimum value of the dual LP is a lower bound on the optimum value of the
primal LP, which is a lower bound on the weighted vertex cover problem.

The dual LP insists that we maximize the combined price of all edges, subject to the
constraint that each vertex has enough wealth to pay for all the edges it covers. Rather than
maximizing the combined price of all edges exactly, we will set edge prices using a natural
(but suboptimal) greedy heuristic: go through the edges in arbitrary order, setting the price
of each one as high as possible without violating the dual constraints. This results in the
following algorithm.

Algorithm 1 Primal-dual algorithm for vertex cover

1: Initialize S ← ∅ and sv ← 0 for all v ∈ V
2: for all e = (u, v) ∈ E do
3: ye ← min{wu − su, wv − sv}
4: su ← su + ye
5: sv ← sv + ye
6: if su = wu then S ← S ∪ {u}
7: else S ← S ∪ {v}
8: end if
9: end for
10: return S

The variables sv keep track of the sum
∑

e∈δ(v) ye (i.e., the left-hand side of the dual

constraint corresponding to vertex v) as it grows during the execution of the algorithm.

It is clear that each iteration of the main loop runs in constant time, so the algorithm
runs in linear time. After processing the edge (u, v), at least one of the vertices u, v must
belong to S, so S is a vertex cover.

To conclude the analysis, we need to prove that the approximation factor is 2. We note
the following loop invariants hold initially and are preserved by the body of the for loop,
therefore are also true at the end:

1. y is a feasible vector for the dual linear program;

2. sv =
∑

e∈δ(v) ye;

3. S ⊆ {v | sv = wv};

4.
∑

v∈V sv = 2
∑

e∈E ye.

Now the proof of the approximation factor is easy. Recalling that
∑

e∈E ye ≤
∑

v∈OPTwv by
weak duality, we find that∑

v∈S

wv =
∑
v∈S

sv ≤
∑
v∈V

sv = 2
∑
e∈E

ye ≤ 2
∑

v∈OPT

wv.

5



In Algorithm 1, the rule for updating S by inserting each vertex v such that sv = wv is
inspired by the principle of complementary slackness from the theory of LP duality. If x∗

and y∗ are optimal solutions of the primal and dual LPs respectively, then for every i such
that x∗

i > 0, the ith dual constraint is satisfied with equality by y∗. Similarly, for every j such
that y∗j > 0, the jth primal constraint is satisfied with equality by x∗. Thus, it is natural that
our decisions of which vertices to include in our vertex cover in the primal solution should
be guided by which dual constraints are tight (sv = wv).

References

[1] G. B. Dantzig. Linear programming. In Proc. Symp. Modern Calculating Machinery and
Numerical Methods, pages 29–31, July 1948.

[2] Narendra Karmarkar. A new polynomial time algorithm for linear programming. Com-
binatorica, 4(4):373–395, 1984.

[3] L. G. Khatchian. A polynomial algorithm in linear programming. Doklady Akademii
Nauk SSSR, 244:1093–1096, 1979.

6


	Linear Programming
	LP-Based Approximation Algorithms
	LP Rounding Algorithm for Weighted Vertex Cover
	Primal-Dual Algorithm for Weighted Vertex Cover


