
Analysis of Algorithms LP + Randomized Rounding
CS6820 Fall 2022 Friday, December 2, 2022

1 Linear Programming with Randomized Rounding

Linear programming and randomization turn out to be a very powerful when used in com-
bination. We will illustrate this by presenting an algorithm of Raghavan and Thompson [1]
for a problem of routing paths in a network to minimize congestion. The analysis of the
algorithm depends on the Chernoff bound, a fact from probability theory that is one of the
most useful tools for analyzing randomized algorithms.

1.1 The Chernoff Bound

The Chernoff bound is a very useful theorem concerning the sum of a large number of
independent random variables. It asserts that the probability that the sum deviates very far
from its mean decays exponentially fast as the distance from the mean increases and as the
number of trials increases.

Theorem 1. Let X1, . . . , Xn be independent random variables taking values in [0, 1], let X
denote their sum, and let µ = E (X). Then

Pr (X ≥ k) < e−µ(eµ/k)k. (1)

Corollary 2. Let X1, . . . , Xk be independent random variables taking values in [0, 1], let
X denote their sum, and let µ = E (X) such that µ ≤ 1. Then for any N > 2 and any
b ≥ e logN/ log logN ,

Pr(X ≥ b) <
1

N
. (2)

Proof. Applying Theorem 1,

Pr(X ≥ b) ≤ e−µ(eµ/b)b ≤ (e/b)b ≤
(
log logN

logN

)e logN/ log logN

, (3)

so it suffices to show that (
log logN

logN

)e logN/ log logN

<
1

N
.

Both sides are positive, so we can take logs. Doing so reduces the problem to showing

logN

log logN
log

(
log logN

logN

)e

< − logN.

1

By a sequence of elementary manipulations, this simplifies to

(logN)e−1

(log logN)e
> 1. (4)

The derivative of the function on the left-hand side vanishes when

log logN =
e

(e− 1) ln 2
,

and plugging this into (4) gives a minimum value of ((e− 1) ln 2)e ∼ 1.61.

1.2 An Approximation Algorithm for Congestion Minimization

We will design an approximation algorithm for the following optimization problem. The
input consists of a directed graph G = (V,E) with positive integer edge capacities ce and a
set of source-sink pairs (si, ti), 1 ≤ i ≤ k, where (si, ti) ∈ V 2 and G contains at least one path
from si to ti. The algorithm must output a list of paths P1, . . . , Pk such that Pi is a path
from si to ti. The load on edge e, denoted by ℓe, is defined to be the number of paths Pi that
traverse edge e. The congestion of edge e is the ratio ℓe/ce, and the algorithm’s objective is
to minimize congestion, that is, minimize the value of maxe∈E (ℓe/ce). This problem turns
out to be NP-hard, although we will not prove that here.

The first step in designing our approximation algorithm is to formulate the problem as
an integer programming problem. We define a decision variable xie for each 1 ≤ i ≤ k and
e ∈ E that can take values 1 or 0 to denote whether e belongs to Pi or not. The resulting
integer program can be written as follows, using δ+(v) to denote the set of edges leaving v
and δ−(v) to denote the set of edges entering v.

minimize r

subject to
∑

e∈δ+(v) xie −
∑

e∈δ−(v) xie =

1, v = si

−1, v = ti

0, v ̸∈ {si, ti}
for 1 ≤ i ≤ k, v ∈ V

∑k
i=1 xie ≤ cer, xie ≥ 0 for 1 ≤ i ≤ k, e ∈ E

When (xie) is a {0, 1}-valued vector obtained from a collection of paths P1, . . . , Pk by setting
xie = 1 for all e ∈ Pi, the first constraint ensures that Pi is a path from si to ti while the
second ensures that the congestion of each edge is bounded above by r.

Now we take the LP relaxation of this integer program and allow the variables xie to take
fractional values. Our approximation algorithm solves the LP, does some postprocessing of
the solution to obtain a probability distribution over paths for each terminal pair (si, ti),
and then outputs an independent random sample from each of these distributions.

To describe the postprocessing step, it helps to observe that the first LP constraint says
that for every i ∈ {1, . . . , k}, the values xie define a network flow of value 1 from si to ti.

2

Call a flow acyclic if there is no directed cycle C with positive flow on each edge of C. The
first step of the postprocessing is to make the flow (xie) acyclic for each i. If there is an
index i ∈ {1, . . . , k} and a directed cycle C such that xie > 0 for every edge e ∈ C, then we
can let δ = min{xie | e ∈ C} and we can modify xie to xie− δ for every e ∈ C. This modified
solution still satisfies all of the LP constraints and has strictly fewer variables with nonzero
values. After finitely many such modifications, we must arrive at a solution in which each
flow (xie), 1 ≤ i ≤ k, is acyclic. This modified solution is also an optimal solution of the
linear program, because we did not increase the value of any variable.

Next, for each i ∈ {1, . . . , k} we take the acyclic flow (xie) and represent it as a probability
distribution over paths from si to ti, that is, as a set of ordered pairs (P, πP) such that P is a
path from si to ti, πP is a positive number interpreted as the probability of P , and the sum
of the probabilities πP over all paths P is equal to 1. The distribution can be constructed
using the following algorithm.

Algorithm 1 Postprocessing algorithm to construct path distribution

1: Given: Source si, sink ti, acyclic flow xie of value 1 from si to ti.
2: Initialize Di = ∅.
3: while there is a path P from si to ti such that xie > 0 for all e ∈ P do
4: πP = min{xie | e ∈ P}
5: Di = Di ∪ {(P, πP)}.
6: for all e ∈ P do
7: xie = xie − πP

8: end for
9: end while
10: return Di

Each iteration of the while loop strictly reduces the number of edges with xie > 0, hence
the algorithm must terminate after selecting at most m paths. When it terminates, the flow
(xie) has value zero (as otherwise there would be a path from si to ti with positive flow on
each edge) and it is acyclic because (xie) was initially acyclic and we never put a nonzero
amount of flow on an edge whose flow was initially zero. The only acyclic flow of value zero
is the zero flow, so when the algorithm terminates we must have xie = 0 for all e.

Each time we selected a path P , we decreased the value of the flow by exactly πP . The
value was initially 1 and finally 0, so the sum of πP over all paths P is exactly 1 as required.
For every edge e, the value xie decreased by exactly πP each time we selected a path P
containing e, hence the combined probability of all paths containing e is exactly xie.

Performing the postprocessing Algorithm 1 for each i, we obtain probability distributions
D1, . . . ,Dk over paths from si to ti, with the property that the probability of a random sample
from Di traversing edge e is equal to xie. Now we choose one path for each i by sampling
the distributions Di independently and output the resulting k-tuple of paths P1, . . . , Pk.

We claim that with probability at least 1/2, the parameter maxe∈E ℓe/ce is at most αr,

3

where m = |E| and

α =
e log(2m)

log log(2m)
.

This follows from Corollary 2. For any edge e, define the independent random variables

Xi =

{
1 if e ∈ Pi

0 otherwise.

Let X = X1 + · · ·+Xk. The Xi are independent and E(X) =
∑k

i=1 xie, which is at most cer
because of the second LP constraint, so E(X/(cer)) ≤ 1. Applying Corollary 2 with N = 2m,

Pr(X ≥ αcer) ≤ Pr(X/(cer) ≥ α) ≤ 1/(2m).

Since X = ℓe, this means that the probability that ℓe/ce exceeds αr is at most 1/(2m).
Summing the probabilities of these failure events for each of the m edges of the graph, we
find that with probability at least 1/2, none of the failure events occur and maxe∈E ℓe/ce is
bounded above by αr.

Now r is a lower bound on the parameter maxe∈E ℓe/ce for any k-tuple of paths with
the specified source-sink pairs, including the optimal solution OPT of the integer program,
since any such k-tuple defines a valid LP solution and r is the optimum value of the LP.
Consequently, with probability at least 1/2,

max
e∈E

ℓe/ce ≤ αr ≤ αOPT,

so our randomized algorithm achieves approximation factor α with probability at least 1/2.

Using the amplification technique from homework 6, this probability can be improved to
1− ε for any desired ε > 0.

References

[1] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.

4

