Lecture 29 Hypercubes and the Gray
Representation

In this lecture we will take an algebraic approach to routing on the hypercube.
We will develop some algebraic tools, which we will then use to analyze the
hypercube implementation of parallel prefix described in the last lecture.

Let Z5 be the field of integers mod 2. The field Z; has 2 elements {0, 1}. Its
multiplication operation is the same as Boolean A, and its addition operation
is the same as Boolean exclusive-or.

Let Z5[z] denote the ring of univariate polynomials with coefficients in 2.
A typical element of this ring is 1 + x + 22 + 2° + 2® + 2%, Note that all
coefficients are either 0 or 1, and + and — are the same thing, since 1 = —1
in ZQ.

Now we take the elements of Z5[z] modulo the polynomial 2™ to get the
quotient ring Z,[z]/x™. This is just like asserting that ™ = 0. It implies that
™ = 0 for all m > n, since 2™ = z" - 2™ = 0 - 2™ " = 0. Elements of
Zy[x]/2™ are thus polynomials of degree n— 1 or less, and there are exactly 2"
such polynomials, the same number as bit strings of length n. We therefore
identify bit strings of length n and elements of Z,[z]/2™ under the one-to-one
correspondence

n—1
agly -+ Qp_q > Z a;x" .
i=0

For example, for n = 5, the bit string 10011 corresponds to the polynomial
1+ 2% + 2. (Warning: the least significant bit in the binary representation

156

LECTURE 29 HYPERCUBES AND THE GRAY REPRESENTATION 157

of a number is the coefficient of the highest degree term in the corresponding
polynomial.)

Under this correspondence, shifting right one bit corresponds to multi-
plication by z in Z;[x]/z", and componentwise exclusive-or corresponds to
addition in Z3[x]/z"™. Thus the procedure for converting from binary to Gray
(shift right and exclusive-or with the original) corresponds to multiplying by
1+ . In other words, if b; and g; are the polynomials in Z[x]/2z™ correspond-
ing to the binary and Gray representations of i respectively, then

gi = b+ b

As we mentioned in the last lecture, this operation is invertible. Recall that
to convert Gray to binary, we calculate the k' bit of the binary representation
by taking the mod 2 sum of the k" bit of the Gray representation and all bits
to its left. Algebraically, this corresponds to the fact that the polynomial 1+
has a multiplicative inverse in Z,[z]/2", namely 1+ + 22 + -+ + 2" L

(14+z) - I+z+2>+- -+

= (I+az+-+2"H+(@+2°+-- +2")

= 1+(@+a)+ @+ ++ (@ T+)+ 2"
= 1+2" sinceq+¢q¢=0

= 1 since z" = 0.

The procedure for converting from Gray to binary then corresponds to mul-
tiplication by 1+ z + 22 + --- + 2""!. (In fact, an element of Z[z]/z" is
invertible iff its constant coefficient is 1. The inverse of 1+ xp is Y1 2ip'.)

In the £ stage of the parallel prefix circuit, we pass messages from node
i to node 7 + 2¥. The distance between these nodes on the hypercube is
the number of bits on which ¢; and g;, o+ differ. This is often called the
Hamming distance. We now show that the Hamming distance between the
Gray representations of i and i +2¥ is 2 if k > 1 and 1 if k = 0.

Let e;, be the degree of the highest power of x that divides b; + b; ox. The
significance of e;; is that it measures the distance that the carry propagates
when adding 2* to 7 in binary. Specifically, the binary representation of 2¥ has
a 1 in bit position n — k — 1 and 0 elsewhere. A carry is propagated to the
left of the n — k — 1* bit position as long as we see a 1 in b;. The carry stops
at the first bit position to the left of n — k£ at which b; contains a 0, and e;
is that bit position (counting from the left and starting at 0), or 0 if no such
position exists. The exclusive-or of the bit strings b; and b; o is of the form
---00011111000 - - -, with 1 in bit positions e;; through n — k — 1 inclusive and
0 elsewhere.

158 LECTURE 29 HYPERCUBES AND THE GRAY REPRESENTATION

In terms of the polynomial representation,

n—k—1

Jj=¢€ik

Converting to Gray, we have

gi + Givor = (L+2)bi + (1 + 2)b; o

(14) (b; + biyor)
n—k—1

= (1+z) Y o

J=€ik
— xeik + xn—k .
This says that the Gray representations of 7 and i + 2* differ only in bits e,

and n — k. In the case k = 0, they differ only in bit e, since ™ = 0. For
example,

b = 1001011101111111100010100111

box = 0000000000000001000000000000
b1 or = 1001011110000000100010100111
b; +b; ox = 0000000011111111000000000000
gi + giror = 0000000010000000100000000000
T T
€Eik n—k

We have shown that the Hamming distance between g; and g; -, and hence
the routing distance on the hypercube between processor i and i + 2%, is at
most 2. Thus in each stage of our parallel prefix circuit, messages must be
passed a distance of at most 2. However, we still need to show how to route
the messages so as to avoid collisions.

Let us use the following protocol. At stage 0, processor i passes its value
to processor i + 1. Processor ¢ can compute the Gray representation of the
destination processor by flipping bit e;9 of its own Gray representation. There
are no collisions, since ¢ — ¢ + 1 is a Hamiltonian circuit.

Subsequently, in stage k, messages are passed from i to i + 2¥ in two
rounds. In the first round, each processor ¢ of even parity flips bit n — k of
its Gray representation and sends its message to the processor with that Gray
representation. (The parity of i is the low order bit of b;, i.e. the coefficient
of z"7!, or the mod 2 sum of the bits of g;.) Each processor i of odd parity
flips bit e;;, of its Gray representation and sends its message to the processor
with that Gray representation. In the second round, those processors receiving
the messages flip the remaining bit and forward the messages to their final
destinations.

There is no collision along wires, i.e. no messages are sent from 7 to j and
simultaneously from j to ¢, because any two nodes with a direct connection in

LECTURE 29 HYPERCUBES AND THE GRAY REPRESENTATION 159

the hypercube have different parity, and if 7 and j are of different parity then
they are flipping different bits in each of the two rounds, so the two messages
cannot be traveling along the same wire at the same time.

However, it is still conceivable that messages might collide at a vertex, 7.e.
¢ and j might both pass to ¢ in the first round. We show that this cannot
happen either. If 7 and j are of different parity, then the messages are going
to processors of different parity. If i and j are of the same parity, then either
in round 1 or round 2 the n — k' bit is being flipped in both transmissions,
and this is a one-to-one map.

Hypercube embeddings and message routing are an active topic of research.
For more information and references, see [54, 55, 104].

Lecture 30 Integer Arithmetic in NC

30.1 Integer Addition

Addition of two n-bit binary numbers can be performed in logn depth with
n processors. We will use parallel prefix to calculate the carry string. Once
the carry is computed, the sum is easily computed in constant time with
n processors by taking the exclusive-or of the two summands and the carry
string.

The carry string is defined as follows:

e The lowest order carry bit is always 0.

e If the i*® bits of the two summands (counting from the right) are both
0, then the i 4+ 1% bit of the carry will be 0, irrespective of the i*" bit of
the carry.

e If the i bits of the two summands are both 1, then the i + 1% bit of
the carry will be 1, irrespective of the i*" bit of the carry.

e If the i*" bits of the two summands are 0 and 1, then the i + 15 bit of
the carry will be the same as the i*" bit of the carry. In this case we say
that the carry is propagated from ¢ to ¢ + 1.

To compute the carry using parallel prefix, we will use a three element algebra
{0,1,p} with associative binary operation - defined below. Intuitively, the

160

LECTURE 30 INTEGER ARITHMETIC IN NC 161

element 0 means, “carry 07, the element 1 means “carry 1”7, and the element
p means, “propagate the carry from the previous bit position”.
The binary operation - is defined by the following table:

In other words, for any = € {0, 1, p},

O-z = 0
1l-z =
p-xr = x.

Note that - is associative but not commutative: 0-1=0but 1-0=1.

Let u be a string over {0, 1, p} with a 0 in position 0, a 0 in position ¢ + 1
if the i*" bits of the two summands are both 0, a 1 in position i + 1 if the
i'h bits of the two summands are both 1, and a p in position 7 + 1 if one of
the i*® bits of the two summands is 0 and the other is 1. The string u can be
computed in constant time from a and b with n processors. The carry string
is obtained by computing the suffix products of u.

Example 30.1 Let ¢« = 100101011101011 and b = 110101001010001. The
string u over {0, 1, p} for these two numbers, the carry string obtained as the
suffixes of u, and the binary sum are as illustrated.

u = 1p01010plpppOpl0
carry = 1001010110000110
a = 100101011101011
b = 110101001010001
sum = 1011010100111100

30.2 Integer Multiplication

Consider a multiplication problem involving two n-bit binary numbers. The
grade school algorithm for multiplication gives n partial sums, which then can

162

LECTURE 30 INTEGER ARITHMETIC IN NC

be added to get the product. For example,

101101
x 101011
101101
101101
000000
101101
000000
+ 101101
11110001111

This can be done in time O((logn)?) with O(n?) processors in a straightfor-
ward way. First compute all the bits of the partial sums, then add the partial
sums in pairs in a tree-like fashion. It takes constant time to compute the

partial sums with O(n?) processors, and O((logn)?) to do the additions.

By being slightly more clever, we can reduce the time to O(logn) by reduc-
ing the problem of adding three n-bit binary numbers to adding two n + 1-bit
binary numbers. Look at the partial sums obtained by adding each 3-bit

column individually:

Rearranging, we get

101100111
101011100
+ 101111101
10
01
11
10
10
10
11
00
+ 11
10
01
11
1%)0 101111101
10 + 101000110
11
00

+ 11

LECTURE 30 INTEGER ARITHMETIC IN NC 163

Thus, in constant time we have reduced the problem of adding three binary
numbers to adding two binary numbers. To apply this to the multiplication
problem (37), we partition the partial sums into sets of three and perform
this step in parallel for all the sets. This reduces the problem of adding n
numbers to the problem of adding %” numbers. We repeat this step until
we have only two numbers, then we just add them using the O(logn) time
addition algorithm described above. After the first stage, we have %n numbers;
after the second stage, (2)’n, and so on. The number of numbers decreases
geometrically, thus there are only O(logn) stages. Each stage takes O(1) time
and O(n?) processors.

30.3 Integer Division

We wish to do integer division with remainder in NC'. That is, given binary
numbers s and ¢, compute the unique quotient ¢ and remainder r such that
s=qt+rand0<r<t.

Our algorithm is based on Newton’s method, a useful technique for approx-
imating roots of differentiable functions. Newton’s method works as follows.
Starting from an initial guess xy, compute a sequence of approximations

(@)

Tit1 ZT; (@)) (38)
where f" = df /dz. For real-valued functions of a real variable, this is equiva-
lent to finding the line tangent to the curve y = f(z) at z; and taking x;,; to
be the point where that line intersects the = axis.

In general, Newton’s method is not guaranteed to converge to a root.
However, if the function is well-behaved and the initial guess xy is close enough
to a root, then the method converges very quickly: the number of bits of
accuracy roughly doubles with each iteration. In this application, although
we are using an approximation technique, we will be using only exact binary
arithmetic (no floating point), and will obtain an exact solution.

We first show how to approximate the reciprocal % of a given number ¢ in
binary. We will do this by approximating the root of the function

fa) = -+

T

using Newton’s method.

164 LECTURE 30 INTEGER ARITHMETIC IN NC

0 1

t

In this case, f'(z) = 272, and (38) becomes

Tir1 = 23% — ta?iZ .

We take as our first approximation xy the unique fractional power of 2 in the

interval (5, 7). This can be found in O(log n) time by finding the unique power

of 2 in the interval [¢,2t) and taking its reciprocal by reversing the order of
the binary digits and placing a binary point after the first 0. We then iterate
Newton’s method to get the sequence of approximations g, 1, T2, These
approximations blast in toward % quickly: we start with an error of at most

%, and at each step we roughly square the error, thus doubling the number of

bits of accuracy. This is called quadratic convergence.

Lemma 30.2 The sequence xg,x1,... obtained from Newton’s method is non-
decreasing and converges quadratically to %

Proof. By definition,

or in other words,
1
0 < 1—-txy < 5 .
For ¢ > 0,

1— tZUZ'+1 = 1- t(2£b‘z — tZUZ'Q)

It follows by induction that

1-— tl‘l == (]_ - th’O)Qi
< 277

LECTURE 30 INTEGER ARITHMETIC IN NC 165
thus
1 <
- —XT; — .
t 22t
From these facts we can conclude that
1 < < < < < 1
—_— :U :U :U .« s . Ju— .
ot V=Tt =T = =y
O

After k = [loglog 7] iterations we have
t
11—tz < —.
s

From this and the fact that x; < % we have that

s
0 < E_Sxk < 1.

Therefore the desired integer part of 7 is either |[sxzy] or [swy], and the re-

mainder can be found by subtracting.

Each Newton iteration took O(logn) time (we did not do enough iterations

to let the numbers get too big) and we needed loglog 3

O(logn) iterations.

For some interesting ramifications of the division problem, including an
O(logn)-depth circuit for integer division under a slightly weaker uniformity

condition, see [9].

