
Lecture �� Hypercubes and the Gray

Representation

In this lecture we will take an algebraic approach to routing on the hypercube	
We will develop some algebraic tools� which we will then use to analyze the
hypercube implementation of parallel pre�x described in the last lecture	

Let Z� be the �eld of integers mod �	 The �eld Z� has � elements f�� �g	 Its
multiplication operation is the same as Boolean �� and its addition operation
is the same as Boolean exclusive�or	

Let Z��x� denote the ring of univariate polynomials with coe�cients in Z�	
A typical element of this ring is � " x " x� " x
 " x� " x�	 Note that all
coe�cients are either � or �� and " and 
 are the same thing� since � $ 
�
in Z�	

Now we take the elements of Z��x� modulo the polynomial xn to get the
quotient ring Z��x��x

n	 This is just like asserting that xn $ �	 It implies that
xm $ � for all m � n� since xm $ xn � xm�n $ � � xm�n $ �	 Elements of
Z��x��x

n are thus polynomials of degree n
� or less� and there are exactly �n

such polynomials� the same number as bit strings of length n	 We therefore
identify bit strings of length n and elements of Z��x��x

n under the one�to�one
correspondence

a�a� � � �an�� ��
n��X
i
�

aix
i �

For example� for n $ �� the bit string ����� corresponds to the polynomial
� " x� " x�	 �Warning 
 the least signi�cant bit in the binary representation

���



Lecture �� Hypercubes and the Gray Representation ���

of a number is the coe�cient of the highest degree term in the corresponding
polynomial	�

Under this correspondence� shifting right one bit corresponds to multi�
plication by x in Z��x��x

n� and componentwise exclusive�or corresponds to
addition in Z��x��x

n	 Thus the procedure for converting from binary to Gray
�shift right and exclusive�or with the original� corresponds to multiplying by
�"x	 In other words� if bi and gi are the polynomials in Z��x��x

n correspond�
ing to the binary and Gray representations of i respectively� then

gi $ bi " xbi

$ �� " x�bi �

As we mentioned in the last lecture� this operation is invertible	 Recall that
to convert Gray to binary� we calculate the kth bit of the binary representation
by taking the mod � sum of the kth bit of the Gray representation and all bits
to its left	 Algebraically� this corresponds to the fact that the polynomial �"x
has a multiplicative inverse in Z��x��x

n� namely � " x" x� " � � �" xn��


�� " x� � �� " x " x� " � � �" xn���

$ �� " x" � � �" xn��� " �x " x� " � � �" xn�

$ � " �x" x� " �x� " x�� " � � �" �xn�� " xn��� " xn

$ � " xn since q " q $ �

$ � since xn $ �	

The procedure for converting from Gray to binary then corresponds to mul�
tiplication by � " x " x� " � � � " xn��	 �In fact� an element of Z��x��x

n is
invertible i� its constant coe�cient is �	 The inverse of � " xp is

Pn��
i
� x

ipi	�
In the kth stage of the parallel pre�x circuit� we pass messages from node

i to node i " �k	 The distance between these nodes on the hypercube is
the number of bits on which gi and gi��k di�er	 This is often called the
Hamming distance	 We now show that the Hamming distance between the
Gray representations of i and i" �k is � if k � � and � if k $ �	

Let eik be the degree of the highest power of x that divides bi" bi��k 	 The
signi�cance of eik is that it measures the distance that the carry propagates
when adding �k to i in binary	 Speci�cally� the binary representation of �k has
a � in bit position n 
 k 
 � and � elsewhere	 A carry is propagated to the
left of the n
 k
 �st bit position as long as we see a � in bi	 The carry stops
at the �rst bit position to the left of n 
 k at which bi contains a �� and eik
is that bit position �counting from the left and starting at ��� or � if no such
position exists	 The exclusive�or of the bit strings bi and bi��k is of the form
� � � ����������� � � �� with � in bit positions eik through n
 k
 � inclusive and
� elsewhere	



��� Lecture �� Hypercubes and the Gray Representation

In terms of the polynomial representation�

bi " bi��k $
n�k��X
j
eik

xj �

Converting to Gray� we have

gi " gi��k $ �� " x�bi " �� " x�bi��k

$ �� " x� � �bi " bi��k�

$ �� " x�
n�k��X
j
eik

xj

$ xeik " xn�k �

This says that the Gray representations of i and i " �k di�er only in bits eik
and n 
 k	 In the case k $ �� they di�er only in bit eik� since x

n $ �	 For
example�

bi $ ����������������������������
b�k $ ����������������������������

bi��k $ ����������������������������
bi " bi��k $ ����������������������������
gi " gi��k $ ����������������������������

�
eik

�
n
 k

We have shown that the Hamming distance between gi and gi��k � and hence
the routing distance on the hypercube between processor i and i " �k� is at
most �	 Thus in each stage of our parallel pre�x circuit� messages must be
passed a distance of at most �	 However� we still need to show how to route
the messages so as to avoid collisions	

Let us use the following protocol	 At stage �� processor i passes its value
to processor i " �	 Processor i can compute the Gray representation of the
destination processor by �ipping bit ei� of its own Gray representation	 There
are no collisions� since i �� i " � is a Hamiltonian circuit	

Subsequently� in stage k� messages are passed from i to i " �k in two
rounds	 In the �rst round� each processor i of even parity �ips bit n 
 k of
its Gray representation and sends its message to the processor with that Gray
representation	 �The parity of i is the low order bit of bi� i�e� the coe�cient
of xn��� or the mod � sum of the bits of gi	� Each processor i of odd parity
�ips bit eik of its Gray representation and sends its message to the processor
with that Gray representation	 In the second round� those processors receiving
the messages �ip the remaining bit and forward the messages to their �nal
destinations	

There is no collision along wires� i�e� no messages are sent from i to j and
simultaneously from j to i� because any two nodes with a direct connection in



Lecture �� Hypercubes and the Gray Representation ���

the hypercube have di�erent parity� and if i and j are of di�erent parity then
they are �ipping di�erent bits in each of the two rounds� so the two messages
cannot be traveling along the same wire at the same time	

However� it is still conceivable that messages might collide at a vertex� i�e�
i and j might both pass to � in the �rst round	 We show that this cannot
happen either	 If i and j are of di�erent parity� then the messages are going
to processors of di�erent parity	 If i and j are of the same parity� then either
in round � or round � the n 
 kth bit is being �ipped in both transmissions�
and this is a one�to�one map	

Hypercube embeddings and message routing are an active topic of research	
For more information and references� see ���� ��� ����	



Lecture �� Integer Arithmetic in NC

���� Integer Addition

Addition of two n�bit binary numbers can be performed in logn depth with
n processors	 We will use parallel pre�x to calculate the carry string	 Once
the carry is computed� the sum is easily computed in constant time with
n processors by taking the exclusive�or of the two summands and the carry
string	

The carry string is de�ned as follows


� The lowest order carry bit is always �	

� If the ith bits of the two summands �counting from the right� are both
�� then the i" �st bit of the carry will be �� irrespective of the ith bit of
the carry	

� If the ith bits of the two summands are both �� then the i " �st bit of
the carry will be �� irrespective of the ith bit of the carry	

� If the ith bits of the two summands are � and �� then the i " �st bit of
the carry will be the same as the ith bit of the carry	 In this case we say
that the carry is propagated from i to i" �	

To compute the carry using parallel pre�x� we will use a three element algebra
f�� �� pg with associative binary operation � de�ned below	 Intuitively� the

���



Lecture 	� Integer Arithmetic in NC ���

element � means� �carry � � the element � means �carry � � and the element
p means� �propagate the carry from the previous bit position 	

The binary operation � is de�ned by the following table


� � � p

� � � �
� � � �
p � � p

In other words� for any x � f�� �� pg�

� � x $ �

� � x $ �

p � x $ x �

Note that � is associative but not commutative
 � � � $ � but � � � $ �	
Let u be a string over f�� �� pg with a � in position �� a � in position i" �

if the ith bits of the two summands are both �� a � in position i " � if the
ith bits of the two summands are both �� and a p in position i " � if one of
the ith bits of the two summands is � and the other is �	 The string u can be
computed in constant time from a and b with n processors	 The carry string
is obtained by computing the su�x products of u	

Example 	
�� Let a $ ��������������� and b $ ���������������	 The
string u over f�� �� pg for these two numbers� the carry string obtained as the
su�xes of u� and the binary sum are as illustrated	

u $ �p�����p�ppp�p��
carry $ ����������������

a $ ���������������
b $ ���������������

sum $ ����������������

�

���� Integer Multiplication

Consider a multiplication problem involving two n�bit binary numbers	 The
grade school algorithm for multiplication gives n partial sums� which then can



��� Lecture 	� Integer Arithmetic in NC

be added to get the product	 For example�

������
	 ������

������
������
������
������
������

" ������
�����������

��
�

This can be done in time O��logn��� with O�n�� processors in a straightfor�
ward way	 First compute all the bits of the partial sums� then add the partial
sums in pairs in a tree�like fashion	 It takes constant time to compute the
partial sums with O�n�� processors� and O��logn��� to do the additions	

By being slightly more clever� we can reduce the time to O�logn� by reduc�
ing the problem of adding three n�bit binary numbers to adding two n"��bit
binary numbers	 Look at the partial sums obtained by adding each ��bit
column individually


���������
���������

" ���������
��
��
��
��
��
��
��
��

" ��

Rearranging� we get

��
��
��
��
��
��
��
��

" ��


� ���������
" ���������



Lecture 	� Integer Arithmetic in NC ��	

Thus� in constant time we have reduced the problem of adding three binary
numbers to adding two binary numbers	 To apply this to the multiplication
problem ��
�� we partition the partial sums into sets of three and perform
this step in parallel for all the sets	 This reduces the problem of adding n
numbers to the problem of adding �n

�
numbers	 We repeat this step until

we have only two numbers� then we just add them using the O�logn� time
addition algorithm described above	 After the �rst stage� we have �

�
n numbers�

after the second stage� ��
�
��n� and so on	 The number of numbers decreases

geometrically� thus there are only O�logn� stages	 Each stage takes O��� time
and O�n�� processors	

���� Integer Division

We wish to do integer division with remainder in NC 	 That is� given binary
numbers s and t� compute the unique quotient q and remainder r such that
s $ qt" r and � � r � t	

Our algorithm is based on Newton�s method� a useful technique for approx�
imating roots of di�erentiable functions	 Newton�s method works as follows	
Starting from an initial guess x�� compute a sequence of approximations

xi�� $ xi 
 f�xi�

f ��xi�
� ����

where f � $ df�dx	 For real�valued functions of a real variable� this is equiva�
lent to �nding the line tangent to the curve y $ f�x� at xi and taking xi�� to
be the point where that line intersects the x axis	

In general� Newton�s method is not guaranteed to converge to a root	
However� if the function is well�behaved and the initial guess x� is close enough
to a root� then the method converges very quickly
 the number of bits of
accuracy roughly doubles with each iteration	 In this application� although
we are using an approximation technique� we will be using only exact binary
arithmetic �no �oating point�� and will obtain an exact solution	

We �rst show how to approximate the reciprocal �
t
of a given number t in

binary	 We will do this by approximating the root of the function

f�x� $ t
 �

x

using Newton�s method	



��� Lecture 	� Integer Arithmetic in NC

�

�

�I
�
t

�

t
�I
f�x� $ t
 �

x

In this case� f ��x� $ x��� and ���� becomes

xi�� $ �xi 
 txi
� �

We take as our �rst approximation x� the unique fractional power of � in the
interval � �

�t
� �
t
�	 This can be found in O�logn� time by �nding the unique power

of � in the interval �t� �t� and taking its reciprocal by reversing the order of
the binary digits and placing a binary point after the �rst �	 We then iterate
Newton�s method to get the sequence of approximations x�� x�� x�� � � �	 These
approximations blast in toward �

t
quickly
 we start with an error of at most

�
�t
� and at each step we roughly square the error� thus doubling the number of

bits of accuracy	 This is called quadratic convergence	

Lemma 	
�� The sequence x�� x�� � � � obtained from Newton�s method is non�
decreasing and converges quadratically to �

t
�

Proof� By de�nition�

�

�t
� x� � �

t
�

or in other words�

� � �
 tx� �
�

�
�

For i � ��

�
 txi�� $ �
 t��xi 
 txi
��

$ ��
 txi�
� �

It follows by induction that

�
 txi $ ��
 tx��
�i

� ���
i

�



Lecture 	� Integer Arithmetic in NC ���

thus

�

t

 xi �

�

��it
�

From these facts we can conclude that

�

�t
� x� � x� � x� � � � � � �

t
�

�

After k $ dlog log s
t
e iterations we have

�
 txk �
t

s
�

From this and the fact that xk � �
t
we have that

� � s

t

 sxk � � �

Therefore the desired integer part of s
t
is either bsxkc or dsxke� and the re�

mainder can be found by subtracting	
Each Newton iteration took O�logn� time �we did not do enough iterations

to let the numbers get too big� and we needed log log s
t
$ O�logn� iterations	

For some interesting rami�cations of the division problem� including an
O�logn��depth circuit for integer division under a slightly weaker uniformity
condition� see ���	




