
Lecture � Fibonacci Heaps

Fibonacci heaps were developed by Fredman and Tarjan in ���� ���� as a
generalization of binomial heaps	 The main intent was to improve Dijkstra�s
single�source shortest path algorithm to O�m" n logn�� but they have many
other applications as well	 In addition to the binomial heap operations� Fi�
bonacci heaps admit two additional operations


decrement�h� i�'� decrease the value of i by '
delete�h� i� remove i from heap h

These operations assume that a pointer to the element i in the heap h is given	
In this lecture we describe how to modify binomial heaps to admit delete

and decrement	 The resulting data structure is called a Fibonacci heap	
The trees in Fibonacci heaps are no longer binomial trees� because we will be
cutting subtrees out of them in a controlled way	 We will still be doing links
and melds as in binomial heaps	 The rank of a tree is still de�ned in the same
way� namely the number of children of the root� and as with binomial heaps
we only link two trees if they have the same rank	

To perform a delete�i�� we might cut out the subtree rooted at i� remove
i� and meld in its newly freed subtrees	 We must also search these newly
freed subtrees for the minimum root value� this requires O�logn� time	 In
decrement�i�'�� we decrement the value of i by '	 The new value of i
might violate the heap order� since it might now be less than the value of i�s
parent	 If so� we might simply cut out the subtree rooted at i and meld it
into the heap	

��
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The problem here is that the O�logn� time bound on deletemin described
in the last lecture was highly dependent on the fact that the size of Bk is
exponential in k� i�e� the trees are bushy	 With delete and decrement as
described above� cutting out a lot of subtrees might make the tree scraggly�
so that the analysis is no longer valid	

��� Cascading Cuts

The way around this problem is to limit the number of cuts among the children
of any vertex to two	 Although the trees will no longer be binomial trees� they
will still be bushy in that their size will be exponential in their rank	

For this analysis� we will set up a savings account for every vertex	 The
�rst time a child is cut from vertex p� charge to the operation that caused the
cut two extra credits and deposit them to the account of p	 Not only does this
give two extra credits to use later� it also marks p as having had one child cut
already	 When a second child is cut from p� cut p from its parent p� and meld
p into the heap� paying for it with one of the extra credits that was deposited
to the account of p when its �rst child was cut	 The other credit is left in
the account of p in order to maintain the invariant that each tree in the heap
have a credit on deposit	 If p was the second child cut from its parent p�� then
p� is cut from its parent� again� this is already paid for by the operation that
cut the �rst child of p�	 These cuts can continue arbitrarily far up the tree�
this is called cascading cuts	 However� all these cascading cuts are already
paid for	 Thus decrement is O���� and delete will still be O�logn� provided
our precautions have guaranteed that the sizes of trees are still exponential in
their rank	

Theorem ��� The size of a tree with root r in a Fibonacci heap is exponential
in rank �r��

Proof� Fix a point in time	 Let x be any vertex and let y�� � � � � ym be the
children of x at that point� arranged in the order in which they were linked
into x	 We show that rank �yi� is at least i
 �	 At the time that yi was linked
into x� x had at least the i 
 � children y�� � � � � yi�� �it may have had more
that have since been cut�	 Since only trees of equal rank are linked� yi also
had at least i 
 � children at that time	 Since then� at most one child of yi
has been cut� or yi itself would have been cut	 Therefore the rank of yi is at
least i
 �	

We have shown that the ith child of any vertex has rank at least i
 �	 Let
Fn be the smallest possible tree of rank n satisfying this property	 The �rst
few Fn are illustrated below	
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Observe that F�� F�� F�� F�� F�� F
� � � �� are of size �� �� �� �� �� �� � � �� respec�
tively	 This sequence of numbers is called the Fibonacci sequence� in which
each number is obtained by adding the previous two	 It therefore su�ces to
show that the nth Fibonacci number fn $ jFnj is exponential in n	

Speci�cally� we show that fn � �n� where � $ ��
p



�
� ����� � � �� the

positive root of the quadratic x�
 x
 �	 The proof proceeds by induction on
n	

For the basis� f� $ � � �� and f� $ � � ��	 Now assume that fn � �n

and fn�� � �n��	 Then

fn�� $ fn�� " fn

� �n�� " �n

$ �n��" ��

$ �n � �� since �� $ �" �

$ �n�� �

�

The real number � is often called the golden ratio	 It was considered the
most perfect proportion for a rectangle by the ancient Greeks because it makes
the ratio of the length of the longer side to the length of the shorter side equal
to the ratio of the sum of the lengths to the length of the longer side	
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�The picture is actually ��pt	 ��pt� giving a ratio of ����	 Apologies to the
ancient Greeks	�

The golden ratio � is more closely related to the Fibonacci sequence than
is apparent from the proof of Theorem �	�	 Consider the linear system�
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which generates the Fibonacci sequence
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Let F denote the � 	 � matrix in ����	 The eigenvalues of F are � and

�� $ ��p

�

� the two roots of its characteristic polynomial

det �xI 
 F � $ x� 
 x
 � �

The eigenvectors associated with � and �� are�
�
�

�
and

�
�
��

�
�

respectively� of which the former is dominant	 Successive applications of a
matrix to a vector with a nonzero component in the direction of a dominant
eigenvector� suitably scaled� will generate a sequence of vectors converging to
that dominant eigenvector	 Thus�
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as n��� in other words� the ratio of successive Fibonacci numbers tends to
�	

��� Fibonacci Heaps and Dijkstra�s Algorithm

We can use Fibonacci heaps to implement Dijkstra�s single�source shortest�
path algorithm �Algorithm �	�� in O�m"n logn� time	 We store the elements
of V 
 X in a Fibonacci heap	 The value of the element v is D�v�	 The
initialization uses the makeheap operation and takes linear time	 We use the
decrement operation to implement the statement

D�v� 
$ min�D�v�� D�u� " ��u� v�� �

This requires constant time for each edge� or O�m� time in all	 We use the
deletemin operation to remove a vertex from the set of unreached vertices	
This takes O�logn� time for each deletion� or O�n logn� time in all	

Another application of Fibonacci heaps is in Prim�s algorithm for minimum
spanning trees	 We leave this application as an exercise �Homework �� Exercise
��	


