Lecture 35 The Fast Fourier Transform (FFT)

Consider two polynomials

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

$$g(x) = b_0 + b_1 x + b_2 x^2 + \ldots + b_m x^m$$

We can represent these two polynomials as vectors of some length $N \geq n + m + 1$. The i^{th} element of the vector is the coefficient of x^i .

$$f = (a_0, a_1, a_2, \dots, a_n, 0, 0, \dots, 0)$$

$$g = (b_0, b_1, b_2, \dots, b_m, 0, 0, \dots, 0).$$
(53)

The product of f and g will then be represented by the vector

$$(a_0b_0, a_1b_0 + a_0b_1, a_2b_0 + a_1b_1 + a_0b_2, \ldots)$$
.

This vector is called the *convolution* of the vectors (53).

The obvious way to compute the convolution of two vectors takes N^2 processors and $\log N$ time. We would like to reduce the processor bound to N. To do this, we will use a different representation of polynomials. Recall that a polynomial of degree N-1 is uniquely determined by its values on N data points. Thus if we have N distinct data points $\xi_0, \xi_1, \ldots, \xi_{N-1}$, we can represent the polynomial f by the vector

$$(f(\xi_0), f(\xi_1), f(\xi_2), \dots, f(\xi_{N-1}))$$
 (54)

The nice thing about this representation is that since

$$fg(\xi_i) = f(\xi_i)g(\xi_i)$$
,

we can calculate the product of two polynomials by doing a componentwise product of the two vectors in constant time with N processors, provided the degree of the product is at most N-1.

The problem now is to find a way to convert from one representation to the other. For any choice of ξ_i , we can convert from (53) to (54) by evaluating the polynomials on the ξ_i ; this amounts to multiplying (53) by the matrix

$$\begin{bmatrix} 1 & \xi_0 & \xi_0^2 & \cdots & \xi_0^{N-1} \\ 1 & \xi_1 & \xi_1^2 & \cdots & \xi_1^{N-1} \\ 1 & \xi_2 & \xi_2^2 & \cdots & \xi_2^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \xi_{N-1} & \xi_{N-1}^2 & \cdots & \xi_{N-1}^{N-1} \end{bmatrix}$$

$$(55)$$

called a *Vandermonde matrix*. We can convert back by interpolation, which amounts to multiplying (54) by the inverse of the matrix (55).

Judicious choice of the ξ_i can make this conversion very efficient. If we are working in a field containing N^{th} roots of unity (roots of the polynomial x^N-1) and a multiplicative inverse of N (i.e., the characteristic of the field does not divide N), then we can get very efficient conversion algorithms by taking the ξ_i to be the N^{th} roots of unity. For example, in the complex numbers \mathcal{C} , let $\omega = e^{\frac{2\pi i}{N}}$ and take $\xi_i = \omega^i$. These points lie uniformly spaced on the complex unit circle (recall that to multiply two complex numbers, you add their angles and multiply their lengths).

The N^{th} roots of unity form a cyclic group under multiplication. An N^{th} root of unity ξ is called *primitive* ([3] uses the term *principal*) if it is a generator of this group, *i.e.* if every N^{th} root of unity is some power of ξ . Not all N^{th} roots of unity are primitive; for N=12 in \mathcal{C} , the primitive roots are ω , ω^5 , ω^7 , and ω^{11} . The root ω^2 is not primitive, because its powers are all of the form ω^{2k} , so it is impossible to obtain odd powers of ω . In general, if ξ is a primitive root, then ξ^k is a primitive root if and only if k and N are relatively prime.

Over any field containing all $N^{\rm th}$ roots of unity, the polynomial x^N-1 factors into linear factors

$$x^N - 1 = \prod_{i=0}^{N-1} (x - \omega^i)$$
,

where ω is a primitive N^{th} root of unity. This is because each of the N^{th} roots of unity is a root of $x^N - 1$, and there can be at most N of them. Since

$$x^{N} - 1 = (x - 1)(x^{N-1} + x^{N-2} + \dots + x + 1)$$

every $N^{\rm th}$ root of unity except $\omega^0=1$ is a root of the polynomial

$$\sum_{j=0}^{N-1} x^j .$$

This gives the following technical property, which we will find useful:

$$\sum_{j=0}^{N-1} w^{ij} = \begin{cases} 0, & \text{if } i \not\equiv 0 \bmod N \\ N, & \text{otherwise.} \end{cases}$$
 (56)

The $N \times N$ Vandermonde matrix (55) for these data points has as its ij^{th} element ω^{ij} , $0 \le i, j \le N - 1$. We denote this matrix F_N . When applied to a vector containing the coefficients of a polynomial

$$f(x) = a_0 + a_1 x + \dots + a_{N-1} x^{N-1}$$

 F_N gives the vector of values of f at the N roots of unity.

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega^{1} & \omega^{2} & \cdots & \omega^{N-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2N-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{N-1} & \omega^{2N-2} & \cdots & \omega^{(N-1)^{2}} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{N-1} \end{bmatrix} = \begin{bmatrix} f(1) \\ f(\omega) \\ f(\omega^{2}) \\ \vdots \\ f(\omega^{N-1}) \end{bmatrix}$$

The linear map represented by the matrix F_N is called the discrete Fourier transform.

The inverse of F_N is particularly easy to describe: its ij^{th} element is

$$(F_N^{-1})_{ij} = \frac{\omega^{-ij}}{N} .$$

Thus F_N^{-1} is $\frac{1}{N}$ times the Fourier transform matrix of a different primitive N^{th} root of unity, namely $\omega^{-1} = \omega^{N-1}$. To show that F_N and F_N^{-1} are indeed inverses, we just calculate their product, using property (56) at the critical step:

$$(F_N \cdot F_N^{-1})_{ij} = \sum_{k=0}^{N-1} \omega^{ik} \cdot \frac{\omega^{-kj}}{N}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \omega^{k(i-j)}$$

$$= \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise,} \end{cases}$$

thus $F_N F_N^{-1}$ is the identity matrix.

Now we want to find a way to compute $F_N f$ quickly, where

$$f = (a_0, a_1, \dots, a_{N-1})$$

is the vector of coefficients of the polynomial f(x). We use a divide-and-conquer approach in which we split f into two polynomials each of size $\frac{N}{2}$ (assume for simplicity that N is a power of 2), apply $F_{\frac{N}{2}}$ to each of them in parallel, then combine the two results to form $F_N f$.

Given

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{N-1} x^{N-1} ,$$

define

$$f_0(x) = a_0 + a_2 x^2 + a_4 x^4 + \dots + a_{N-2} x^{N-2}$$

$$\hat{f}_0(x) = a_0 + a_2 x + a_4 x^2 + \dots + a_{N-2} x^{\frac{N}{2}-1}$$

$$f_1(x) = a_1 + a_3 x^2 + a_5 x^4 + \dots + a_{N-1} x^{N-2}$$

$$\hat{f}_1(x) = a_1 + a_3 x + a_5 x^2 + \dots + a_{N-1} x^{\frac{N}{2}-1}$$

Then

$$f(x) = f_0(x) + x f_1(x)$$

$$f_0(x) = \hat{f}_0(x) \circ x^2$$

$$f_1(x) = \hat{f}_1(x) \circ x^2$$

where \circ represents functional composition (substitute the right polynomial for the variable in the left polynomial). Both \hat{f}_0 and \hat{f}_1 have degree at most $\frac{N}{2}-1$. We recursively apply $F_{\frac{N}{2}}$ to the vectors $\hat{f}_0=(a_0,a_2,\ldots,a_{N-2})$ and $\hat{f}_1=(a_1,a_3,\ldots,a_{N-1})$ to get $F_{\frac{N}{2}}f_0$ and $F_{\frac{N}{2}}f_1$. The primitive $\frac{N}{2}$ root of unity used in the formation of $F_{\frac{N}{2}}$ is ω^2 .

Now we show that the N-vector $F_N f_0$ is obtained by concatenating two copies of the $\frac{N}{2}$ -vector $F_N \hat{f_0}$, and similarly for f_1 . The i^{th} element of $F_N f_0$ is

$$f_0(\omega^i) = (\hat{f}_0 \circ x^2)(\omega^i)$$
$$= \hat{f}_0(\omega^{2i}),$$

which is the $i^{\text{th}} \mod \frac{N}{2}$ element of $F_{\frac{N}{2}} \hat{f}_0$. The argument is similar for f_1 . Finally

$$F_N f = F_N(f_0 + xf_1)$$

= $F_N f_0 + F_N(xf_1)$
= $F_N f_0 + F_N x \cdot F_N f_1$,

where \cdot represents componentwise multiplication. We have already computed $F_N f_0$ and $F_N f_1$ by recursively computing the Fourier transform of two vectors of size $\frac{N}{2}$; and

$$F_N x = (1, \omega, \omega^2, \dots, \omega^{N-1}) ,$$

so we have all we need to compute $F_N f$.

With N processors, it takes us constant time to split f into \widehat{f}_0 and \widehat{f}_1 . We then do two recursive calls in parallel to calculate $F_N f_0$ and $F_N f_1$, each using $\frac{N}{2}$ processors. Finally, it takes constant time to recombine the results to get $F_N f$. Therefore, the algorithm uses $O(\log N)$ time and N processors.

This gives a very efficient parallel algorithm for multiplying two polynomials: compute their Fourier transforms, multiply the resulting vectors componentwise, then take the inverse Fourier transform. The entire algorithm takes $O(\log N)$ time and N processors.

It is interesting to ask what happens when the degrees of the polynomials are so large that the degree of their product exceeds N-1. The answer is that terms that fall off the right side of the vector wrap around; in other words, the coefficient of the term x^{N+i} in the product is added to the coefficient of x^i . Mathematically, what is going on is that the product of the two polynomials is being computed modulo the polynomial $x^N - 1$:

$$F_N^{-1}(F_N f \cdot F_N g) = fg \bmod x^N - 1.$$

A fancy way of saying this is that the Fourier transform gives an isomorphism

$$F_N: k[x]/(x^N-1) \rightarrow k^N$$

between two N-dimensional algebras over the field k, namely the algebra of polynomials mod x^N-1 with ordinary polynomial multiplication and the direct product k^N with componentwise multiplication.

The parallel algorithm for the FFT given here is essentially implicit in the 1965 paper of Cooley and Tukey [24], although that was well before anyone had ever heard of NC.