Lecture 35 The Fast Fourier Transform
(FFT)

Consider two polynomials

f(@) = ao+ax+ar®+...+aa"
g(x) = by + bz +byax® + ...+ bypa™ .

We can represent these two polynomials as vectors of some length N > n +
m + 1. The i*" element of the vector is the coefficient of z°.

f = (a07a17a27'"7an70707"'70)

g = (bosbi b, by 0,0, 0) . (53)

The product of f and g will then be represented by the vector
(agbo, a1b0 + Cl()bl, Clgb() + a1b1 + ang, ..) .

This vector is called the convolution of the vectors (53).

The obvious way to compute the convolution of two vectors takes N? pro-
cessors and log N time. We would like to reduce the processor bound to V.
To do this, we will use a different representation of polynomials. Recall that
a polynomial of degree N — 1 is uniquely determined by its values on N data

points. Thus if we have N distinct data points &g, &y, ..., n_1, We can repre-
sent the polynomial f by the vector
(f(gﬂ)af(gl)af(§2)7"'7f(§N—1)) : (54)

186

LECTURE 35 THE FAST FOURIER TRANSFORM (FFT) 187

The nice thing about this representation is that since

fa&) = f(&)g(&)

we can calculate the product of two polynomials by doing a componentwise
product of the two vectors in constant time with /N processors, provided the
degree of the product is at most N — 1.

The problem now is to find a way to convert from one representation to
the other. For any choice of §;, we can convert from (53) to (54) by evaluating
the polynomials on the &;; this amounts to multiplying (53) by the matrix

(1 & & - 915_1—
1 & % %vii
1 & & - & (55)
1 Eva &y e VT

called a Vandermonde matriz. We can convert back by interpolation, which
amounts to multiplying (54) by the inverse of the matrix (55).

Judicious choice of the & can make this conversion very efficient. If we are
working in a field containing N roots of unity (roots of the polynomial 2~ —1)
and a multiplicative inverse of N (i.e., the characteristic of the field does not
divide N), then we can get very efficient conversion algorithms by taking the
& to be the N roots of unity. For example, in the complex numbers C, let
w=e7 and take & = w'. These points lie uniformly spaced on the complex
unit circle (recall that to multiply two complex numbers, you add their angles
and multiply their lengths).

The N*® roots of unity form a cyclic group under multiplication. An N'*" root
of unity ¢ is called primitive ([3] uses the term principal) if it is a generator of
this group, i.e. if every N*® root of unity is some power of £&. Not all N*! roots
of unity are primitive; for N = 12 in C, the primitive roots are w, w®, w7, and
w''. The root w? is not primitive, because its powers are all of the form w?*,
so it is impossible to obtain odd powers of w. In general, if £ is a primitive
root, then £¥ is a primitive root if and only if k¥ and N are relatively prime.
Over any field containing all N*" roots of unity, the polynomial 2V — 1

factors into linear factors

N -1 = H(x—wi),

188 LECTURE 35 THE FAST FOURIER TRANSFORM (FFT)

where w is a primitive N*® root of unity. This is because each of the N*® roots
of unity is a root of 2V — 1, and there can be at most N of them. Since

N1 = @-D@VN PN P21,

every N'® root of unity except w® = 1 is a root of the polynomial

This gives the following technical property, which we will find useful:

N_l . .
ij 0, ifiZO0modN
] _ 5
]z% v { N , otherwise. (56)

The N x N Vandermonde matrix (55) for these data points has as its 75
element w", 0 < 4,5 < N — 1. We denote this matrix Fyy. When applied to a
vector containing the coefficients of a polynomial

flz) = ao+ax+ - 4+ay_zN

Fy gives the vector of values of f at the N roots of unity.

11 11 ao £(1)

1wt w? e Wt a f(w)

1 w2 W . N2 a0 _ f(&?)
|1 wN-l N W(N=1)? || ava J | fNY J

The linear map represented by the matrix Fly is called the discrete Fourier
transform.
The inverse of Fly is particularly easy to describe: its ij'" element is

w Y

(Fy')y = N

Thus Fy'is % times the Fourier transform matrix of a different primitive Nt
root of unity, namely w™' = w™~. To show that Fy and Fy' are indeed
inverses, we just calculate their product, using property (56) at the critical
step:

2

L
=
&

z

E .

(Fy - Fyl)ij =

I
|

&

=

T 2\

£
Il
o

ifi=y
otherwise,

I
—— =]

O =

LECTURE 35 THE FAST FOURIER TRANSFORM (FFT) 189

thus FyFy' is the identity matrix.
Now we want to find a way to compute Fy f quickly, where

f = (ag,al, ceey aN,l)

is the vector of coefficients of the polynomial f(x). We use a divide-and-

conquer approach in which we split f into two polynomials each of size %

(assume for simplicity that N is a power of 2), apply Fx to each of them in
2

parallel, then combine the two results to form Fy f.

Given
fx) = ag+ax+ayr®+... +ay_z¥ ",
define
fo(@) = ap+ar? +agz* + ... +ay oz ?
Ag(x) = a0+a2x+a4x2+...+aN,2x%’l
fil@) = ap+asr® +asz* + ... +ay_ 2V
Al(x) = o +a3x+a5x2+...+aN,1:c%’1
Then

fl@) = folz) +2fi(z)
folz) = JE)(fL“)OfL"2
file) = fi(x)oa?

where o represents functional composition (substitute the right polynomial
for the variable in the left polynomial). Both fy and f; have degree at most

_12. — 1. We recursively apply Fz;z to the vectors fo = (ag,as9,...,anx 2) and
fi = ai,as,...,an—_1) toget Fnx fo and F'y fi;. The primitive = * root of unit
g 2 y
2 2

used in the formation of Fix is w?.

2
Now we show that the N-vector Fy fp is obtained by concatenating two
copies of the %—VGCtOI‘ F% fo, and similarly for f;. The i*" element of Fy fy is

folw') = (fooa®)(w')
= fO (w%))
which is the 7™ mod % element of F% fo. The argument is similar for f.
Finally

Fnf = Fn(fo+azfi)
= Fnfo+ Fn(afr)
= Fnfo+Fyz-Fnfi,

190 LECTURE 35 THE FAST FOURIER TRANSFORM (FFT)

where - represents componentwise multiplication. We have already computed
Fy fo and Fiy f1 by recursively computing the Fourier transform of two vectors
of size %; and

Fyr = (Lw,o? ... ,w™),
so we have all we need to compute Fi f.

With N processors, it takes us constant time to split f into fg and fl We
then do two recursive calls in parallel to calculate Fiy fo and Fy f;, each using
% processors. Finally, it takes constant time to recombine the results to get
Fy f. Therefore, the algorithm uses O(log N) time and N processors.

This gives a very efficient parallel algorithm for multiplying two polynomi-
als: compute their Fourier transforms, multiply the resulting vectors compo-
nentwise, then take the inverse Fourier transform. The entire algorithm takes
O(log N) time and N processors.

It is interesting to ask what happens when the degrees of the polynomials
are so large that the degree of their product exceeds N —1. The answer is that
terms that fall off the right side of the vector wrap around; in other words,
the coefficient of the term ¥ ** in the product is added to the coefficient of z°.
Mathematically, what is going on is that the product of the two polynomials
is being computed modulo the polynomial 2% — 1:

Fﬁl(FNf -Fyg) = fgmod N —1.
A fancy way of saying this is that the Fourier transform gives an isomorphism
Fy:k[z]/(2Y —1) — kY

between two N-dimensional algebras over the field k£, namely the algebra of
polynomials mod zV — 1 with ordinary polynomial multiplication and the
direct product £V with componentwise multiplication.

The parallel algorithm for the FFT given here is essentially implicit in the
1965 paper of Cooley and Tukey [24], although that was well before anyone
had ever heard of NC.

