Lecture 35 The Fast Fourier Transform (FFT)

Consider two polynomials

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n} \\
g(x) & =b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{m} x^{m}
\end{aligned}
$$

We can represent these two polynomials as vectors of some length $N \geq n+$ $m+1$. The $i^{\text {th }}$ element of the vector is the coefficient of x^{i}.

$$
\begin{align*}
f & =\left(a_{0}, a_{1}, a_{2}, \ldots, a_{n}, 0,0, \ldots, 0\right) \\
g & =\left(b_{0}, b_{1}, b_{2}, \ldots, b_{m}, 0,0, \ldots, 0\right) \tag{53}
\end{align*}
$$

The product of f and g will then be represented by the vector

$$
\left(a_{0} b_{0}, a_{1} b_{0}+a_{0} b_{1}, a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}, \ldots\right) .
$$

This vector is called the convolution of the vectors (53).
The obvious way to compute the convolution of two vectors takes N^{2} processors and $\log N$ time. We would like to reduce the processor bound to N. To do this, we will use a different representation of polynomials. Recall that a polynomial of degree $N-1$ is uniquely determined by its values on N data points. Thus if we have N distinct data points $\xi_{0}, \xi_{1}, \ldots, \xi_{N-1}$, we can represent the polynomial f by the vector

$$
\begin{equation*}
\left(f\left(\xi_{0}\right), f\left(\xi_{1}\right), f\left(\xi_{2}\right), \ldots, f\left(\xi_{N-1}\right)\right) \tag{54}
\end{equation*}
$$

The nice thing about this representation is that since

$$
f g\left(\xi_{i}\right)=f\left(\xi_{i}\right) g\left(\xi_{i}\right)
$$

we can calculate the product of two polynomials by doing a componentwise product of the two vectors in constant time with N processors, provided the degree of the product is at most $N-1$.

The problem now is to find a way to convert from one representation to the other. For any choice of ξ_{i}, we can convert from (53) to (54) by evaluating the polynomials on the ξ_{i}; this amounts to multiplying (53) by the matrix

$$
\left[\begin{array}{ccccc}
1 & \xi_{0} & \xi_{0}^{2} & \cdots & \xi_{0}^{N-1} \tag{55}\\
1 & \xi_{1} & \xi_{1}^{2} & \cdots & \xi_{1}^{N-1} \\
1 & \xi_{2} & \xi_{2}^{2} & \cdots & \xi_{2}^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \xi_{N-1} & \xi_{N-1}^{2} & \cdots & \xi_{N-1}^{N-1}
\end{array}\right]
$$

called a Vandermonde matrix. We can convert back by interpolation, which amounts to multiplying (54) by the inverse of the matrix (55).

Judicious choice of the ξ_{i} can make this conversion very efficient. If we are working in a field containing $N^{\text {th }}$ roots of unity (roots of the polynomial $x^{N}-1$) and a multiplicative inverse of N (i.e., the characteristic of the field does not divide N), then we can get very efficient conversion algorithms by taking the ξ_{i} to be the $N^{\text {th }}$ roots of unity. For example, in the complex numbers \mathcal{C}, let $\omega=e^{\frac{2 \pi i}{N}}$ and take $\xi_{i}=\omega^{i}$. These points lie uniformly spaced on the complex unit circle (recall that to multiply two complex numbers, you add their angles and multiply their lengths).

The $N^{\text {th }}$ roots of unity form a cyclic group under multiplication. An $N^{\text {th }}$ root of unity ξ is called primitive ([3] uses the term principal) if it is a generator of this group, i.e. if every $N^{\text {th }}$ root of unity is some power of ξ. Not all $N^{\text {th }}$ roots of unity are primitive; for $N=12$ in \mathcal{C}, the primitive roots are $\omega, \omega^{5}, \omega^{7}$, and ω^{11}. The root ω^{2} is not primitive, because its powers are all of the form $\omega^{2 k}$, so it is impossible to obtain odd powers of ω. In general, if ξ is a primitive root, then ξ^{k} is a primitive root if and only if k and N are relatively prime.

Over any field containing all $N^{\text {th }}$ roots of unity, the polynomial $x^{N}-1$ factors into linear factors

$$
x^{N}-1=\prod_{i=0}^{N-1}\left(x-\omega^{i}\right)
$$

where ω is a primitive $N^{\text {th }}$ root of unity. This is because each of the $N^{\text {th }}$ roots of unity is a root of $x^{N}-1$, and there can be at most N of them. Since

$$
x^{N}-1=(x-1)\left(x^{N-1}+x^{N-2}+\cdots+x+1\right)
$$

every $N^{\text {th }}$ root of unity except $\omega^{0}=1$ is a root of the polynomial

$$
\sum_{j=0}^{N-1} x^{j}
$$

This gives the following technical property, which we will find useful:

$$
\sum_{j=0}^{N-1} w^{i j}= \begin{cases}0, & \text { if } i \not \equiv 0 \bmod N \tag{56}\\ N, & \text { otherwise }\end{cases}
$$

The $N \times N$ Vandermonde matrix (55) for these data points has as its $i j^{\text {th }}$ element $\omega^{i j}, 0 \leq i, j \leq N-1$. We denote this matrix F_{N}. When applied to a vector containing the coefficients of a polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{N-1} x^{N-1}
$$

F_{N} gives the vector of values of f at the N roots of unity.

$$
\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & \omega^{1} & \omega^{2} & \cdots & \omega^{N-1} \\
1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2 N-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \omega^{N-1} & \omega^{2 N-2} & \cdots & \omega^{(N-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
a_{0} \\
a_{1} \\
a_{2} \\
\vdots \\
a_{N-1}
\end{array}\right]=\left[\begin{array}{c}
f(1) \\
f(\omega) \\
f\left(\omega^{2}\right) \\
\vdots \\
f\left(\omega^{N-1}\right)
\end{array}\right]
$$

The linear map represented by the matrix F_{N} is called the discrete Fourier transform.

The inverse of F_{N} is particularly easy to describe: its $i j^{\text {th }}$ element is

$$
\left(F_{N}^{-1}\right)_{i j}=\frac{\omega^{-i j}}{N}
$$

Thus F_{N}^{-1} is $\frac{1}{N}$ times the Fourier transform matrix of a different primitive $N^{\text {th }}$ root of unity, namely $\omega^{-1}=\omega^{N-1}$. To show that F_{N} and F_{N}^{-1} are indeed inverses, we just calculate their product, using property (56) at the critical step:

$$
\begin{aligned}
\left(F_{N} \cdot F_{N}^{-1}\right)_{i j} & =\sum_{k=0}^{N-1} \omega^{i k} \cdot \frac{\omega^{-k j}}{N} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \omega^{k(i-j)} \\
& = \begin{cases}1, & \text { if } i=j \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

thus $F_{N} F_{N}^{-1}$ is the identity matrix.
Now we want to find a way to compute $F_{N} f$ quickly, where

$$
f=\left(a_{0}, a_{1}, \ldots, a_{N-1}\right)
$$

is the vector of coefficients of the polynomial $f(x)$. We use a divide-andconquer approach in which we split f into two polynomials each of size $\frac{N}{2}$ (assume for simplicity that N is a power of 2), apply $F_{\frac{N}{2}}$ to each of them in parallel, then combine the two results to form $F_{N} f$.

Given

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{N-1} x^{N-1}
$$

define

$$
\begin{aligned}
& f_{0}(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+\ldots+a_{N-2} x^{N-2} \\
& \widehat{f}_{0}(x)=a_{0}+a_{2} x+a_{4} x^{2}+\ldots+a_{N-2} x^{\frac{N}{2}-1} \\
& f_{1}(x)=a_{1}+a_{3} x^{2}+a_{5} x^{4}+\ldots+a_{N-1} x^{N-2} \\
& \widehat{f_{1}}(x)=a_{1}+a_{3} x+a_{5} x^{2}+\ldots+a_{N-1} x^{\frac{N}{2}-1}
\end{aligned}
$$

Then

$$
\begin{aligned}
f(x) & =f_{0}(x)+x f_{1}(x) \\
f_{0}(x) & =\widehat{f}_{0}(x) \circ x^{2} \\
f_{1}(x) & =\widehat{f}_{1}(x) \circ x^{2}
\end{aligned}
$$

where \circ represents functional composition (substitute the right polynomial for the variable in the left polynomial). Both \widehat{f}_{0} and \widehat{f}_{1} have degree at most $\frac{N}{2}-1$. We recursively apply $F_{\frac{N}{2}}$ to the vectors $\widehat{f_{0}}=\left(a_{0}, a_{2}, \ldots, a_{N-2}\right)$ and $\widehat{f}_{1}=\left(a_{1}, a_{3}, \ldots, a_{N-1}\right)$ to get $F_{\frac{N}{2}} f_{0}$ and $F_{\frac{N}{2}} f_{1}$. The primitive $\frac{N}{2}{ }^{\text {th }}$ root of unity used in the formation of $F_{\frac{N}{2}}$ is ω^{2}.

Now we show that the N-vector $F_{N} f_{0}$ is obtained by concatenating two copies of the $\frac{N}{2}$-vector $F_{\frac{N}{2}} \widehat{f}_{0}$, and similarly for f_{1}. The $i^{\text {th }}$ element of $F_{N} f_{0}$ is

$$
\begin{aligned}
f_{0}\left(\omega^{i}\right) & =\left(\widehat{f}_{0} \circ x^{2}\right)\left(\omega^{i}\right) \\
& =\widehat{f}_{0}\left(\omega^{2 i}\right),
\end{aligned}
$$

which is the $i^{\text {th }} \bmod \frac{N}{2}$ element of $F_{\frac{N}{2}} \widehat{f}_{0}$. The argument is similar for f_{1}.
Finally

$$
\begin{aligned}
F_{N} f & =F_{N}\left(f_{0}+x f_{1}\right) \\
& =F_{N} f_{0}+F_{N}\left(x f_{1}\right) \\
& =F_{N} f_{0}+F_{N} x \cdot F_{N} f_{1}
\end{aligned}
$$

where • represents componentwise multiplication. We have already computed $F_{N} f_{0}$ and $F_{N} f_{1}$ by recursively computing the Fourier transform of two vectors of size $\frac{N}{2}$; and

$$
F_{N} x=\left(1, \omega, \omega^{2}, \ldots, \omega^{N-1}\right)
$$

so we have all we need to compute $F_{N} f$.
With N processors, it takes us constant time to split f into $\widehat{f_{0}}$ and \widehat{f}_{1}. We then do two recursive calls in parallel to calculate $F_{N} f_{0}$ and $F_{N} f_{1}$, each using $\frac{N}{2}$ processors. Finally, it takes constant time to recombine the results to get $F_{N} f$. Therefore, the algorithm uses $O(\log N)$ time and N processors.

This gives a very efficient parallel algorithm for multiplying two polynomials: compute their Fourier transforms, multiply the resulting vectors componentwise, then take the inverse Fourier transform. The entire algorithm takes $O(\log N)$ time and N processors.

It is interesting to ask what happens when the degrees of the polynomials are so large that the degree of their product exceeds $N-1$. The answer is that terms that fall off the right side of the vector wrap around; in other words, the coefficient of the term x^{N+i} in the product is added to the coefficient of x^{i}. Mathematically, what is going on is that the product of the two polynomials is being computed modulo the polynomial $x^{N}-1$:

$$
F_{N}^{-1}\left(F_{N} f \cdot F_{N} g\right)=f g \bmod x^{N}-1
$$

A fancy way of saying this is that the Fourier transform gives an isomorphism

$$
F_{N}: k[x] /\left(x^{N}-1\right) \rightarrow k^{N}
$$

between two N-dimensional algebras over the field k, namely the algebra of polynomials mod $x^{N}-1$ with ordinary polynomial multiplication and the direct product k^{N} with componentwise multiplication.

The parallel algorithm for the FFT given here is essentially implicit in the 1965 paper of Cooley and Tukey [24], although that was well before anyone had ever heard of $N C$.

