
Lecture �� The Fast Fourier Transform

�FFT�

Consider two polynomials

f�x� $ a� " a�x " a�x
� " � � �" anx

n

g�x� $ b� " b�x" b�x
� " � � �" bmx

m �

We can represent these two polynomials as vectors of some length N � n "
m" �	 The ith element of the vector is the coe�cient of xi	

f $ �a�� a�� a�� � � � � an� �� �� � � � � ��
g $ �b�� b�� b�� � � � � bm� �� �� � � � � �� �

����

The product of f and g will then be represented by the vector

�a�b�� a�b� " a�b�� a�b� " a�b� " a�b�� � � �� �

This vector is called the convolution of the vectors ����	
The obvious way to compute the convolution of two vectors takes N� pro�

cessors and logN time	 We would like to reduce the processor bound to N 	
To do this� we will use a di�erent representation of polynomials	 Recall that
a polynomial of degree N 
 � is uniquely determined by its values on N data
points	 Thus if we have N distinct data points ��� ��� � � � � �N��� we can repre�
sent the polynomial f by the vector

�f����� f����� f����� � � � � f��N���� � ����

���



Lecture 	� The Fast Fourier Transform �FFT� ���

The nice thing about this representation is that since

fg��i� $ f��i�g��i� �

we can calculate the product of two polynomials by doing a componentwise
product of the two vectors in constant time with N processors� provided the
degree of the product is at most N 
 �	

The problem now is to �nd a way to convert from one representation to
the other	 For any choice of �i� we can convert from ���� to ���� by evaluating
the polynomials on the �i� this amounts to multiplying ���� by the matrix���������

� �� ��� � � � �N���

� �� ��� � � � �N���

� �� ��� � � � �N���
			

			
			

	 	 	
			

� �N�� ��N�� � � � �N��N��

��������� ����

called a Vandermonde matrix	 We can convert back by interpolation� which
amounts to multiplying ���� by the inverse of the matrix ����	

Judicious choice of the �i can make this conversion very e�cient	 If we are
working in a �eld containingN th roots of unity �roots of the polynomial xN
��
and a multiplicative inverse of N �i�e�� the characteristic of the �eld does not
divide N�� then we can get very e�cient conversion algorithms by taking the
�i to be the N th roots of unity	 For example� in the complex numbers C� let
� $ e

��i
N and take �i $ �i	 These points lie uniformly spaced on the complex

unit circle �recall that to multiply two complex numbers� you add their angles
and multiply their lengths�	

��
��r
r rr rrrr
r
r

r
r

� $ e
��i
N

N $ ��

The N th roots of unity form a cyclic group under multiplication	 An N th root
of unity � is called primitive ���� uses the term principal� if it is a generator of
this group� i�e� if every N th root of unity is some power of �	 Not all N th roots
of unity are primitive� for N $ �� in C� the primitive roots are �� �
� ��� and
���	 The root �� is not primitive� because its powers are all of the form ��k�
so it is impossible to obtain odd powers of �	 In general� if � is a primitive
root� then �k is a primitive root if and only if k and N are relatively prime	

Over any �eld containing all N th roots of unity� the polynomial xN 
 �
factors into linear factors

xN 
 � $
N��Y
i�

�x
 �i� �



��� Lecture 	� The Fast Fourier Transform �FFT�

where � is a primitive N th root of unity	 This is because each of the N th roots
of unity is a root of xN 
 �� and there can be at most N of them	 Since

xN 
 � $ �x
 ���xN�� " xN�� " � � �" x" �� �

every N th root of unity except �� $ � is a root of the polynomial

N��X
j�

xj �

This gives the following technical property� which we will �nd useful


N��X
j�

wij $



� � if i �� � mod N
N � otherwise	

����

The N 	N Vandermonde matrix ���� for these data points has as its ijth

element �ij� � � i� j � N 
 �	 We denote this matrix FN 	 When applied to a
vector containing the coe�cients of a polynomial

f�x� $ a� " a�x " � � �" aN��xN�� �

FN gives the vector of values of f at the N roots of unity	���������

� � � � � � �
� �� �� � � � �N��

� �� �� � � � ��N��
			

			
			

	 	 	
			

� �N�� ��N�� � � � ��N����

���������

���������

a�
a�
a�
			

aN��

��������� $

���������

f���
f���
f����

			
f��N���

���������
The linear map represented by the matrix FN is called the discrete Fourier
transform	

The inverse of FN is particularly easy to describe
 its ijth element is

�F��
N �ij $

��ij

N
�

Thus F��
N is �

N
times the Fourier transform matrix of a di�erent primitive N th

root of unity� namely ��� $ �N��	 To show that FN and F��
N are indeed

inverses� we just calculate their product� using property ���� at the critical
step


�FN � F��
N �ij $

N��X
k�

�ik � �
�kj

N

$
�

N

N��X
k�

�k�i�j�

$



� � if i $ j
� � otherwise�



Lecture 	� The Fast Fourier Transform �FFT� ���

thus FNF
��
N is the identity matrix	

Now we want to �nd a way to compute FNf quickly� where

f $ �a�� a�� � � � � aN���

is the vector of coe�cients of the polynomial f�x�	 We use a divide�and�
conquer approach in which we split f into two polynomials each of size N

�

�assume for simplicity that N is a power of ��� apply FN
�
to each of them in

parallel� then combine the two results to form FNf 	
Given

f�x� $ a� " a�x " a�x
� " � � �" aN��xN�� �

de�ne

f��x� $ a� " a�x
� " a�x

� " � � �" aN��xN��bf��x� $ a� " a�x " a�x
� " � � �" aN��x

N
�
��

f��x� $ a� " a�x
� " a
x

� " � � �" aN��xN��bf��x� $ a� " a�x " a
x
� " � � �" aN��x

N
�
�� �

Then

f�x� $ f��x� " xf��x�

f��x� $ bf��x� � x�
f��x� $ bf��x� � x�

where � represents functional composition �substitute the right polynomial
for the variable in the left polynomial�	 Both bf� and bf� have degree at most
N
�

 �	 We recursively apply FN

�
to the vectors bf� $ �a�� a�� � � � � aN��� andbf� $ �a�� a�� � � � � aN��� to get FN

�
f� and FN

�
f�	 The primitive N

�

th
root of unity

used in the formation of FN
�
is ��	

Now we show that the N �vector FNf� is obtained by concatenating two
copies of the N

�
�vector FN

�

bf�� and similarly for f�	 The i
th element of FNf� is

f���
i� $ � bf� � x����i�

$ bf����i� �

which is the ith mod N
�
element of FN

�

bf�	 The argument is similar for f�	

Finally

FNf $ FN�f� " xf��

$ FNf� " FN�xf��

$ FNf� " FNx � FNf� �



��� Lecture 	� The Fast Fourier Transform �FFT�

where � represents componentwise multiplication	 We have already computed
FNf� and FNf� by recursively computing the Fourier transform of two vectors
of size N

�
� and

FNx $ ��� �� ��� � � � � �N��� �

so we have all we need to compute FNf 	
With N processors� it takes us constant time to split f into bf� and bf�	 We

then do two recursive calls in parallel to calculate FNf� and FNf�� each using
N
�
processors	 Finally� it takes constant time to recombine the results to get

FNf 	 Therefore� the algorithm uses O�logN� time and N processors	
This gives a very e�cient parallel algorithm for multiplying two polynomi�

als
 compute their Fourier transforms� multiply the resulting vectors compo�
nentwise� then take the inverse Fourier transform	 The entire algorithm takes
O�logN� time and N processors	

It is interesting to ask what happens when the degrees of the polynomials
are so large that the degree of their product exceeds N
�	 The answer is that
terms that fall o� the right side of the vector wrap around� in other words�
the coe�cient of the term xN�i in the product is added to the coe�cient of xi	
Mathematically� what is going on is that the product of the two polynomials
is being computed modulo the polynomial xN 
 �


F��
N �FNf � FNg� $ fg mod xN 
 � �

A fancy way of saying this is that the Fourier transform gives an isomorphism

FN 
 k�x���xN 
 �� � kN

between two N �dimensional algebras over the �eld k� namely the algebra of
polynomials mod xN 
 � with ordinary polynomial multiplication and the
direct product kN with componentwise multiplication	

The parallel algorithm for the FFT given here is essentially implicit in the
���� paper of Cooley and Tukey ����� although that was well before anyone
had ever heard of NC 	


