Lecture 17 More on Max Flow

The Max Flow-Min Cut Theorem gives an algorithm for finding a flow with
maximum value in a given network as long as the capacities are rational num-
bers. This algorithm was first published in 1956 by Ford and Fulkerson [34].

The algorithm works as follows. We begin with the zero flow, then repeat-
edly find an augmenting path p and push d additional units of flow along p
from s to ¢, where d > 0 is the bottleneck capacity of p (minimum edge capac-
ity along p). We continue until it is no longer possible to find an augmenting
path, ¢.e. until the residual graph has no path from s to t. We know at that
point by the Max Flow-Min Cut Theorem that we have a max flow.

If the edge capacities are integers, this algorithm increases the flow value
by at least 1 with each augmentation, hence achieves a maximum flow after
at most |f*| augmentations. Moreover, each augmentation increases the flow
by an integral amount, so |f*| is an integer. Unfortunately, |f*| can be
exponential in the representation of the problem, and the algorithm can run
for this long if the augmenting paths are not chosen with some care.

Example 17.1 The following diagram illustrates the first few augmentations
in a flow problem with large capacities. The residual graphs are shown on
the left-hand side and the augmenting paths on the right. This sequence of

augmentations will take 2!%! steps to converge to a max flow, which has value
9101

90

LECTURE 17 MORE ON MAX FLoOw 91

2100

2100

2100

-1 2100

-1

O

In fact, if the capacities are irrational, the process of repeated augmenta-
tion along indiscriminately chosen augmenting paths may not produce a max
flow after a finite time, as the following example shows.

Example 17.2 Let r be the positive root of the quadratic z? + = — 1:

~14+5
ro= %[~ 618...

2

Then 72 = 1 — 7, and more generally, r"*2 = 7™ — ™! for any n > 0. Also,

since 0 < r < 1,

L >r > 77 > > .. > 0.
Note
1 o0
r+2 = = > .
1—1r =0
Consider the following flow network:
) 1 O
S > r) t

92 LECTURE 17 MORE ON MAX FLOW

The three horizontal interior edges (call them the flumes) have the capacities
shown, and all other edges have capacity r + 2. The max flow value is 1 +
r 4+ 1?2 = 2, since this is the minimum cut capacity obtained by cutting the
flumes; any other cut has capacity at least r + 2 > 2.

Suppose that in the first augmenting step, we push one unit of flow directly
from s to t along the top flume. This leaves residual capacities of 0,7, and r?
on the flumes.

Now we perform the following loop, which after n iterations will result in
the flumes having residual capacities 0, 7"+, and r"*2 in some order: choose
the flume with minimum nonzero residual capacity, say d, and push d units
of flow from s forward along that flume, back through the saturated flume,
and then forward through the remaining flume to t. Suppose that we start
with residual capacities 0, 7", and r"*! on the flumes. The minimum nonzero
residual capacity is 7"*!, and the new residual capacities will be 7"+, " —
r"tt = pn+2 and 0, respectively. The situation is the same as before, only
rotated.

The loop can be repeated indefinitely, leaving ever higher powers of r on
the flumes. We always have sufficient residual capacity on the non-flumes.
The residual capacities tend to 0, so the flow value tends to the maximum
flow value 2.

With irrational capacities, the sequence of augmentations need not even
converge to the maximum flow value. An example of this behavior can be
obtained from the graph above by adding an edge (s,t) of weight 1. The
same infinite sequence of augmentations converges to a flow of value 2, but
the maximum flow value is 3. a

17.1 Edmonds and Karp’s First Heuristic

Edmonds and Karp [30] suggested two heuristics to improve this situation.
The first is the following:

Always augment by a path of maximum bottleneck capacity.

Definition 17.3 A path flow in G is a flow f that takes nonzero values only
on some simple path from s to ¢. In other words, there exist a number d and

a simple path wug, uy,...,u, with s = ug, ¢ = uy, and such that
f(uiauiJrl) = d7 OSZSk—l
fluipr,u;)) = —d, 0<i<k—-1

f(u,v) = 0, for all other (u,v).

O

Lemma 17.4 Any flow in G can be expressed as a sum of at most m path
flows in G and a flow in G of value 0, where m is the number of edges of G.

LECTURE 17 MORE ON MAX FLoOw 93

Proof. Let f be a flow in G. If |f| = 0, we are done. Otherwise, assume
|f| > 0 (the argument for |f| < 0 is symmetric, interchanging the roles of s
and t). Define a new capacity function ¢'(e) = max{f(e),0} and let G’ be the
graph with these capacities. Then f is still a flow in G’, and since ¢ < ¢, any
flow in G’ is also a flow in G. By the Max Flow-Min Cut Theorem, the null
flow in G' must have an augmenting path, which is a path from s to ¢ with
positive capacities; by construction of G', every edge on this path is saturated
by f. Take p to be the path flow on that path whose value is the bottleneck
capacity. Then the two flows p and f — p are both flows in G', and at least
one edge on the path (the bottleneck edge) is saturated by p.

Now we repeat the process with f — p to get ¢’ < ¢ and G”, and so on.
Note that G" has strictly fewer edges than G', since at least the bottleneck
edge of p has disappeared. This process can therefore be repeated at most m
times before the flow value vanishes. The original f is then the sum of the
remaining flow of value 0 and the path flows found in each step. O

We now consider the complexity of maximum-capacity augmentation.

Theorem 17.5 If the edge capacities are integers, then the heuristic of aug-
mentation by augmenting paths of mazximum bottleneck capacity results in a
mazimum flow f* in at most O(mlog|f*|) augmenting steps.

Proof. By Lemma 17.4, f* is a sum of at most m path flows and a flow
of value 0, therefore one of the path flows must be of value |f*|/m or greater.
An augmenting path of maximum bottleneck capacity must have at least this
capacity. Augmenting by such a path therefore increases the flow value by at
least |f*|/m, so by Lemma 16.7(d) of the previous lecture, the max flow in
the residual graph has value at most |f*| — |f*|/m = |/*|(®%1). Thus after
k augmenting steps, the max flow in the residual graph has value at most
| /*[(Z=1). Hence the number of augmenting steps required to achieve a max
flow is no more than the least number £ such that

., om—1
— 1.
I <
Using the estimate
logm —log(m—1) = O©(—), (24)

we obtain k = ©(mlog|f*|). The estimate (24) follows from the limit

1
lim (1 ——)" =

n—0o0 n

o |

O

Finding a maximum capacity augmenting path can be done efficiently using
a modification of Dijkstra’s algorithm (Homework 5).

94 LECTURE 17 MORE ON MAX FLOW

17.2 Edmonds and Karp’s Second Heuristic

The method described above is still less than completely satisfactory, since the
complexity depends on the capacities. It would be nice to have an algorithm
whose asymptotic worst-case complexity is a small polynomial in m and n
alone.

The following algorithm produces a max flow in time independent of the
edge capacities. This algorithm is also due to Edmonds and Karp [30]. It uses
the following heuristic to achieve an O(m?n) running time:

Always choose an augmenting path of minimum length.

Definition 17.6 The level graph L of G is the directed breadth-first search
graph of G with root s with sideways and back edges deleted. The level of a
vertex u is the length of a shortest path from s to u in G. a

Note that the level graph has no edges from level i to level j for j > i + 2.
This says that any shortest path from s to any other vertex is a path in the
level graph. Any path with either a back or sideways edge of the breadth-first
search graph would be strictly longer, since it must contain at least one edge
per level anyway.

Lemma 17.7 (a) Let p be an augmenting path of minimum length in G,
let G' be the residual graph obtained by augmenting along p, and let q
be an augmenting path of minimum length in G'. Then |q| > |p|. Thus
the length of shortest augmenting paths cannot decrease by applying the
above heuristic.

(b) We can augment along shortest paths of the same length at most m = |E)|
times before the length of the shortest augmenting path must increase
strictly.

Proof. Choose any path p from s to ¢ in the level graph and augment along

p by the bottleneck capacity. After this augmentation, at least one edge of
p will be saturated (the bottleneck edge) and will disappear in the residual
graph, and at most |p| new edges will appear in the residual graph. All these
new edges are back edges and cannot contribute to a shortest path from s to
t as long as ¢ is still reachable from s in the level graph. We continue finding
paths in the level graph and augmenting by them as long as ¢ is reachable from
s. This can occur at most m times, since each time an edge in the level graph
disappears. When ¢ is no longer reachable from s in the level graph, then any
augmenting path must use a back or side edge, hence must be strictly longer.
a

This gives rise to the following algorithm:

LECTURE 17 MORE ON MAX FLoOw 95

Algorithm 17.8 (Edmonds and Karp [30]) Find the level graph L.
Repeatedly augment along paths in L, updating residual capacities and
deleting edges with zero capacity until ¢ is no longer reachable from s.
Then calculate a new level graph from the residual graph at that point
and repeat. Continue as long as ¢ is reachable from s.

With each level graph calculation, the distance from s to ¢ increases by at
least 1 by Lemma 17.7(a), so there are at most n level graph calculations. For
each level graph calculation, there are at most m augmentations by Lemma
17.7(b). Thus there are at most mn augmentations in all. Each augmentation
requires time O(m) by DFS or BFS, or O(m?n) in all. It takes time O(m)
to calculate the level graphs by BFS, or O(mn) time in all. Therefore the
running time of the entire algorithm is O(m?n).

