
Lecture �	 More on Max Flow

The Max Flow�Min Cut Theorem gives an algorithm for �nding a �ow with
maximum value in a given network as long as the capacities are rational num�
bers	 This algorithm was �rst published in ���� by Ford and Fulkerson ����	

The algorithm works as follows	 We begin with the zero �ow� then repeat�
edly �nd an augmenting path p and push d additional units of �ow along p
from s to t� where d � � is the bottleneck capacity of p �minimum edge capac�
ity along p�	 We continue until it is no longer possible to �nd an augmenting
path� i�e� until the residual graph has no path from s to t	 We know at that
point by the Max Flow�Min Cut Theorem that we have a max �ow	

If the edge capacities are integers� this algorithm increases the �ow value
by at least � with each augmentation� hence achieves a maximum �ow after
at most jf�j augmentations	 Moreover� each augmentation increases the �ow
by an integral amount� so jf�j is an integer	 Unfortunately� jf�j can be
exponential in the representation of the problem� and the algorithm can run
for this long if the augmenting paths are not chosen with some care	

Example ���� The following diagram illustrates the �rst few augmentations
in a �ow problem with large capacities	 The residual graphs are shown on
the left�hand side and the augmenting paths on the right	 This sequence of
augmentations will take ���� steps to converge to a max �ow� which has value
����	

��



Lecture �� More on Max Flow ��

s
Z

Z
Z

Z�

	
	

	
	�

s

s

	
	

	
	�

Z
Z

Z
Z�

�

ss t�

����

��������

����

s		
	

	�

s

s

	
	

	
	�

�

ss t�

����

����

s
Z

Z
Z

Z�

	
	

	
	�

s

s

	
	

	
	�

Z
Z

Z
Z�

� ss t�

����

�������� 
 �

���� 
 �

s
Z

Z
Z

Z�s

s
Z

Z
Z

Z�

� ss t�

����

����

s
Z

Z
Z

Z�

	
	

	
	�

s

s

	
	

	
	�

Z
Z

Z
Z�

�

ss t�

���� 
 �

���� 
 ����� 
 �

���� 
 �

s		
	

	�

s

s

	
	

	
	�

�

ss t�

���� 
 �

���� 
 �

�

In fact� if the capacities are irrational� the process of repeated augmenta�
tion along indiscriminately chosen augmenting paths may not produce a max
�ow after a �nite time� as the following example shows	

Example ���� Let r be the positive root of the quadratic x� " x
 �


r $

� "p�

�
� ���� � � �

Then r� $ � 
 r� and more generally� rn�� $ rn 
 rn�� for any n � �	 Also�
since � � r � ��

� � r � r� � r� � � � � � � �

Note

r " � $
�

�
 r
$

�X
n
�

rn �

Consider the following �ow network


s
s
s
s

s
s
s

s�
�

�
��

�
�

�
�

�R �

�

�

�
�

�
��
�

�
�

�
�R

�

�

�
�

�

�

	 �

�

�
�

�

�

	r�

r

�

s t



�� Lecture �� More on Max Flow

The three horizontal interior edges �call them the �umes� have the capacities
shown� and all other edges have capacity r " �	 The max �ow value is � "
r " r� $ �� since this is the minimum cut capacity obtained by cutting the
�umes� any other cut has capacity at least r " � � �	

Suppose that in the �rst augmenting step� we push one unit of �ow directly
from s to t along the top �ume	 This leaves residual capacities of �� r� and r�

on the �umes	
Now we perform the following loop� which after n iterations will result in

the �umes having residual capacities �� rn��� and rn�� in some order
 choose
the �ume with minimum nonzero residual capacity� say d� and push d units
of �ow from s forward along that �ume� back through the saturated �ume�
and then forward through the remaining �ume to t	 Suppose that we start
with residual capacities �� rn� and rn�� on the �umes	 The minimum nonzero
residual capacity is rn��� and the new residual capacities will be rn��� rn 

rn�� $ rn��� and �� respectively	 The situation is the same as before� only
rotated	

The loop can be repeated inde�nitely� leaving ever higher powers of r on
the �umes	 We always have su�cient residual capacity on the non��umes	
The residual capacities tend to �� so the �ow value tends to the maximum
�ow value �	

With irrational capacities� the sequence of augmentations need not even
converge to the maximum �ow value	 An example of this behavior can be
obtained from the graph above by adding an edge �s� t� of weight �	 The
same in�nite sequence of augmentations converges to a �ow of value �� but
the maximum �ow value is �	 �

���� Edmonds and Karp�s First Heuristic

Edmonds and Karp ���� suggested two heuristics to improve this situation	
The �rst is the following


Always augment by a path of maximum bottleneck capacity	

De�nition ���	 A path �ow in G is a �ow f that takes nonzero values only
on some simple path from s to t	 In other words� there exist a number d and
a simple path u�� u�� � � � � uk with s $ u�� t $ uk� and such that

f�ui� ui��� $ d� � � i � k 
 �
f�ui��� ui� $ 
d� � � i � k 
 �

f�u� v� $ �� for all other �u� v�	

�

Lemma ���� Any �ow in G can be expressed as a sum of at most m path
�ows in G and a �ow in G of value �� where m is the number of edges of G�



Lecture �� More on Max Flow �	

Proof� Let f be a �ow in G	 If jf j $ �� we are done	 Otherwise� assume
jf j � � �the argument for jf j � � is symmetric� interchanging the roles of s
and t�	 De�ne a new capacity function c��e� $ maxff�e�� �g and let G� be the
graph with these capacities	 Then f is still a �ow in G�� and since c� � c� any
�ow in G� is also a �ow in G	 By the Max Flow�Min Cut Theorem� the null
�ow in G� must have an augmenting path� which is a path from s to t with
positive capacities� by construction of G�� every edge on this path is saturated
by f 	 Take p to be the path �ow on that path whose value is the bottleneck
capacity	 Then the two �ows p and f 
 p are both �ows in G�� and at least
one edge on the path �the bottleneck edge� is saturated by p	

Now we repeat the process with f 
 p to get c�� � c� and G��� and so on	
Note that G�� has strictly fewer edges than G�� since at least the bottleneck
edge of p has disappeared	 This process can therefore be repeated at most m
times before the �ow value vanishes	 The original f is then the sum of the
remaining �ow of value � and the path �ows found in each step	 �

We now consider the complexity of maximum�capacity augmentation	

Theorem ���� If the edge capacities are integers� then the heuristic of aug�
mentation by augmenting paths of maximum bottleneck capacity results in a
maximum �ow f� in at most O�m log jf�j� augmenting steps�

Proof� By Lemma �
	�� f� is a sum of at most m path �ows and a �ow
of value �� therefore one of the path �ows must be of value jf�j�m or greater	
An augmenting path of maximum bottleneck capacity must have at least this
capacity	 Augmenting by such a path therefore increases the �ow value by at
least jf�j�m� so by Lemma ��	
�d� of the previous lecture� the max �ow in
the residual graph has value at most jf�j 
 jf�j�m $ jf�j�m��

m
�	 Thus after

k augmenting steps� the max �ow in the residual graph has value at most
jf�j�m��

m
�k	 Hence the number of augmenting steps required to achieve a max

�ow is no more than the least number k such that

jf�j�m
 �

m
�k � � �

Using the estimate

logm
 log�m
 �� $ !�
�

m
� � ����

we obtain k $ !�m log jf�j�	 The estimate ���� follows from the limit

lim
n����


�

n
�n $

�

e
�

�

Finding a maximum capacity augmenting path can be done e�ciently using
a modi�cation of Dijkstra�s algorithm �Homework ��	



�� Lecture �� More on Max Flow

���� Edmonds and Karp�s Second Heuristic

The method described above is still less than completely satisfactory� since the
complexity depends on the capacities	 It would be nice to have an algorithm
whose asymptotic worst�case complexity is a small polynomial in m and n
alone	

The following algorithm produces a max �ow in time independent of the
edge capacities	 This algorithm is also due to Edmonds and Karp ����	 It uses
the following heuristic to achieve an O�m�n� running time


Always choose an augmenting path of minimum length	

De�nition ���� The level graph LG of G is the directed breadth��rst search
graph of G with root s with sideways and back edges deleted	 The level of a
vertex u is the length of a shortest path from s to u in G	 �

Note that the level graph has no edges from level i to level j for j � i"�	
This says that any shortest path from s to any other vertex is a path in the
level graph	 Any path with either a back or sideways edge of the breadth��rst
search graph would be strictly longer� since it must contain at least one edge
per level anyway	

Lemma ���� �a� Let p be an augmenting path of minimum length in G�
let G� be the residual graph obtained by augmenting along p� and let q
be an augmenting path of minimum length in G�� Then jqj � jpj� Thus
the length of shortest augmenting paths cannot decrease by applying the
above heuristic�

�b� We can augment along shortest paths of the same length at most m $ jEj
times before the length of the shortest augmenting path must increase
strictly�

Proof� Choose any path p from s to t in the level graph and augment along
p by the bottleneck capacity	 After this augmentation� at least one edge of
p will be saturated �the bottleneck edge� and will disappear in the residual
graph� and at most jpj new edges will appear in the residual graph	 All these
new edges are back edges and cannot contribute to a shortest path from s to
t as long as t is still reachable from s in the level graph	 We continue �nding
paths in the level graph and augmenting by them as long as t is reachable from
s	 This can occur at most m times� since each time an edge in the level graph
disappears	 When t is no longer reachable from s in the level graph� then any
augmenting path must use a back or side edge� hence must be strictly longer	

�

This gives rise to the following algorithm




Lecture �� More on Max Flow ��

Algorithm ���� 
Edmonds and Karp �	
�� Find the level graph LG	
Repeatedly augment along paths in LG� updating residual capacities and
deleting edges with zero capacity until t is no longer reachable from s	
Then calculate a new level graph from the residual graph at that point
and repeat	 Continue as long as t is reachable from s	

With each level graph calculation� the distance from s to t increases by at
least � by Lemma �
	
�a�� so there are at most n level graph calculations	 For
each level graph calculation� there are at most m augmentations by Lemma
�
	
�b�	 Thus there are at most mn augmentations in all	 Each augmentation
requires time O�m� by DFS or BFS� or O�m�n� in all	 It takes time O�m�
to calculate the level graphs by BFS� or O�mn� time in all	 Therefore the
running time of the entire algorithm is O�m�n�	


