Lecture 18 Still More on Max Flow

18.1 Dinic’s Algorithm

We follow Tarjan’s presentation [100]. In the Edmonds-Karp algorithm, we
continue to augment by path flows along paths in the level graph Lg until
every path from s to ¢ in L contains at least one saturated edge. The flow at
that point is called a blocking flow. The following modification, which improves
the running time to O(mn?), was given by Dinic in 1970 [29]. Rather than
constructing a blocking flow path by path, the algorithm constructs a blocking
flow all at once by finding a maximal set of minimum-length augmenting paths.
Each such construction is called a phase.

The following algorithm describes one phase. As in Edmonds-Karp, there
are at most n phases, because with each phase the minimum distance from s
to ¢ in the residual graph increases by at least one. We traverse the level graph
from source to sink in a depth-first fashion, advancing whenever possible and
keeping track of the path from s to the current vertex. If we get all the way
to t, we have found an augmenting path, and we augment by that path. If
we get to a vertex with no outgoing edges, we delete that vertex (there is no
path to ¢ through it) and retreat.

In the following, u denotes the vertex currently being visited and p is a
path from s to w.

96

LECTURE 18 STILL MORE ON MAX FLOW 97

Algorithm 18.1 (Dinic [29])

Initialize. Construct a new level graph Lg. Set u := s and p := [s]. Go
to Advance.

Advance. If there is no edge out of u, go to Retreat. Otherwise, let
(u,v) be such an edge. Set p :=p-[v] and u :=v. If v # t then go
to Advance. If v =t then go to Augment.

Retreat. If u = s then halt. Otherwise, delete v and all adjacent edges
from Lg and remove u from the end of p. Set u := the last vertex
on p. Go to Advance.

Augment. Let A be the bottleneck capacity along p. Augment by the
path flow along p of value A, adjusting residual capacities along p.
Delete newly saturated edges. Set u := the last vertex on the path
p reachable from s along unsaturated edges of p; that is, the start
vertex of the first newly saturated edge on p. Set p := the portion
of p up to and including u. Go to Advance.

We now discuss the complexity of these operations.

Initialize. This is executed only once per phase and takes O(m) time using
BFS.

Advance. There are at most 2mn advances in each phase, because there
can be at most n advances before an augment or retreat, and there are at
most m augments and m retreats. Each advance takes constant time, so the
total time for all advances is O(mn).

Retreat. There are at most n retreats in each phase, because at least one
vertex is deleted in each retreat. Each retreat takes O(1) time plus the time
to delete edges, which in all is O(m); thus the time taken by all retreats in a
phase is O(m + n).

Augment. There are at most m augments in each phase, because at least
one edge is deleted each time. Each augment takes O(n) time, or O(mn) time
in all.

Each phase then requires O(mn) time. Because there are at most n phases,
the total running time is O(mn?).

18.2 The MPM Algorithm

The following algorithm given by Malhotra, Pramodh-Kumar, and Mahesh-
wari in 1978 [77] produces a max flow in O(n?) time. The overall structure is

98 LECTURE 18 STILL MORE ON MAX FLow

similar to the Edmonds-Karp or Dinic algorithms. Blocking flows are found
for level graphs of increasing depth. The algorithm’s superior time bound is
due a faster (O(n?)) method for producing a blocking flow.

For this algorithm, we need to consider the capacity of a vertex as opposed
to the capacity of an edge. Intuitively, the capacity of a vertex is the maximum
amount of commodity that can be pushed through that vertex.

Definition 18.2 The capacity c(v) of a vertex v is the minimum of the total
capacity of its incoming edges and the total capacity of its outgoing edges:

c(v) = min{)_ e(u,v), Y c(v,u)}.

ueV ueV

O

This definition applies as well to residual capacities obtained by subtracting
a nonzero flow.

The MPM algorithm proceeds in phases. In each phase, the residual graph
is computed for the current flow, and the level graph L is computed. If ¢ does
not appear in L, we are done. Otherwise, all vertices not on a path from s to
t in the level graph are deleted.

Now we repeat the following steps until a blocking flow is achieved:

LECTURE 18 STILL MORE ON MAX FLOW 99

1. Find a vertex v of minimum capacity d according to Definition
18.2. If d =0, do step 2. If d # 0, do step 3.

2. Delete v and all incident edges and update the capacities of the
neighboring vertices. Go to 1.

3. Push d units of flow from v to the sink and pull d units of flow
from the source to v to increase the flow through v by d. This is
done as follows:

Push to sink. The outgoing edges of v are saturated in order,
leaving at most one partially saturated edge. All edges that
become saturated during this process are deleted. This pro-
cess is then repeated on each vertex that received flow during
the saturation of the edges out of v, and so on all the way to
t. It is always possible to push all d units of flow all the way
to t, since every vertex has capacity at least d.

Pull from source. The incoming edges of v are saturated in or-
der, leaving at most one partially saturated edge. All edges
that become saturated by this process are deleted. This pro-
cess is then repeated on each vertex from which flow was taken
during the saturation of the edges into v, and so on all the
way back to s. It is always possible to pull all d units of flow
all the way back to s, since every vertex has capacity at least
d.

Either all incoming edges of v or all outgoing edges of v are satu-
rated and hence deleted, so v and all its remaining incident edges
can be deleted from the level graph, and the capacities of the neigh-
bors updated. Go to 1.

It takes O(m) time to compute the residual graph for the current flow
and level graph using BFS. Using Fibonacci heaps, it takes O(nlogn) time
amortized over all iterations of the loop to find and delete a vertex of minimum
capacity. It takes O(m) time over all iterations of the loop to delete all the
fully saturated edges, since we spend O(1) time for each such edge. It takes
O(n?) time over all iterations of the loop to do the partial saturations, because
it is done at most once in step 3 at each vertex for each choice of v in step 1.

Note that when we delete edges, we must decrement the capacities of
neighboring vertices; this is done using the decrement facility of Fibonacci
heaps.

The loop thus achieves a blocking flow in O(n?) time. As before, at most
n blocking flows have to be computed, because the distance from s to ¢ in the
level graph increases by at least one each time. This gives an overall worst-case
time bound of O(n?).

The max flow problem is still an active topic of research. Although O(n?)

100 LECTURE 18 STILL MORE ON MAX FLow

remains the best known time bound for general graphs, new approaches to the
max flow problem and better time bounds for sparse graphs have appeared
more recently [38, 98, 4, 41, 95, 37].

18.3 Applications of Max Flow
Bipartite Matching

Definition 18.3 A matching M of a graph G is a subset of edges such that no
two edges in M share a vertex. We denote the size of M by |M|. A mazimum
matching is one of maximum size. a

We can use any max flow algorithm to produce a maximum matching in
a bipartite graph G = (U, V, E) as follows. Add a new source vertex s and a
new sink vertex ¢, connect s to every vertex in U, and connect every vertex
in V to t. Assign every edge capacity 1. The edges from U to V used by a
maximum integral flow give a maximum matching.

Minimum Connectivity

Let G = (V, E) be a connected undirected graph. What is the least number
of edges we need to remove in order to disconnect G7 This is known as the
minimum connectivity problem.

The minimum connectivity problem can be solved by solving n — 1 max
flow problems. Replace each undirected edge with two directed edges, one in
each direction. Assign capacity 1 to each edge. Let s be a fixed vertex in V
and let ¢ range over all other vertices. Find the max flow for each value of ¢,
and take the minimum over all choices of ¢. This also gives a minimum cut,
which gives a solution to the minimum connectivity problem.

