
Lecture �
 Still More on Max Flow

��� Dinic�s Algorithm

We follow Tarjan�s presentation �����	 In the Edmonds�Karp algorithm� we
continue to augment by path �ows along paths in the level graph LG until
every path from s to t in LG contains at least one saturated edge	 The �ow at
that point is called a blocking �ow	 The following modi�cation� which improves
the running time to O�mn��� was given by Dinic in ��� ����	 Rather than
constructing a blocking �ow path by path� the algorithm constructs a blocking
�ow all at once by �nding a maximal set of minimum�length augmenting paths	
Each such construction is called a phase	

The following algorithm describes one phase	 As in Edmonds�Karp� there
are at most n phases� because with each phase the minimum distance from s
to t in the residual graph increases by at least one	 We traverse the level graph
from source to sink in a depth��rst fashion� advancing whenever possible and
keeping track of the path from s to the current vertex	 If we get all the way
to t� we have found an augmenting path� and we augment by that path	 If
we get to a vertex with no outgoing edges� we delete that vertex �there is no
path to t through it� and retreat	

In the following� u denotes the vertex currently being visited and p is a
path from s to u	

��



Lecture �� Still More on Max Flow ��

Algorithm ���� Dinic �����

Initialize� Construct a new level graph LG	 Set u 
$ s and p 
$ �s�	 Go
to Advance	

Advance� If there is no edge out of u� go to Retreat	 Otherwise� let
�u� v� be such an edge	 Set p 
$ p � �v� and u 
$ v	 If v �$ t then go
to Advance	 If v $ t then go to Augment	

Retreat� If u $ s then halt	 Otherwise� delete u and all adjacent edges
from LG and remove u from the end of p	 Set u 
$ the last vertex
on p	 Go to Advance	

Augment� Let ' be the bottleneck capacity along p	 Augment by the
path �ow along p of value '� adjusting residual capacities along p	
Delete newly saturated edges	 Set u 
$ the last vertex on the path
p reachable from s along unsaturated edges of p� that is� the start
vertex of the �rst newly saturated edge on p	 Set p 
$ the portion
of p up to and including u	 Go to Advance	

We now discuss the complexity of these operations	

Initialize� This is executed only once per phase and takes O�m� time using
BFS	

Advance� There are at most �mn advances in each phase� because there
can be at most n advances before an augment or retreat� and there are at
most m augments and m retreats	 Each advance takes constant time� so the
total time for all advances is O�mn�	

Retreat� There are at most n retreats in each phase� because at least one
vertex is deleted in each retreat	 Each retreat takes O��� time plus the time
to delete edges� which in all is O�m�� thus the time taken by all retreats in a
phase is O�m" n�	

Augment� There are at most m augments in each phase� because at least
one edge is deleted each time	 Each augment takes O�n� time� or O�mn� time
in all	

Each phase then requires O�mn� time	 Because there are at most n phases�
the total running time is O�mn��	

��� The MPM Algorithm

The following algorithm given by Malhotra� Pramodh�Kumar� and Mahesh�
wari in ��� �� produces a max �ow in O�n�� time	 The overall structure is



�� Lecture �� Still More on Max Flow

similar to the Edmonds�Karp or Dinic algorithms	 Blocking �ows are found
for level graphs of increasing depth	 The algorithm�s superior time bound is
due a faster �O�n��� method for producing a blocking �ow	

For this algorithm� we need to consider the capacity of a vertex as opposed
to the capacity of an edge	 Intuitively� the capacity of a vertex is the maximum
amount of commodity that can be pushed through that vertex	

De�nition ���� The capacity c�v� of a vertex v is the minimum of the total
capacity of its incoming edges and the total capacity of its outgoing edges


c�v� $ minfX
u�V

c�u� v��
X
u�V

c�v� u�g �

�

This de�nition applies as well to residual capacities obtained by subtracting
a nonzero �ow	

The MPM algorithm proceeds in phases	 In each phase� the residual graph
is computed for the current �ow� and the level graph L is computed	 If t does
not appear in L� we are done	 Otherwise� all vertices not on a path from s to
t in the level graph are deleted	

Now we repeat the following steps until a blocking �ow is achieved




Lecture �� Still More on Max Flow ��

�	 Find a vertex v of minimum capacity d according to De�nition
��	�	 If d $ �� do step �	 If d �$ �� do step �	

�	 Delete v and all incident edges and update the capacities of the
neighboring vertices	 Go to �	

�	 Push d units of �ow from v to the sink and pull d units of �ow
from the source to v to increase the �ow through v by d	 This is
done as follows


Push to sink� The outgoing edges of v are saturated in order�
leaving at most one partially saturated edge	 All edges that
become saturated during this process are deleted	 This pro�
cess is then repeated on each vertex that received �ow during
the saturation of the edges out of v� and so on all the way to
t	 It is always possible to push all d units of �ow all the way
to t� since every vertex has capacity at least d	

Pull from source� The incoming edges of v are saturated in or�
der� leaving at most one partially saturated edge	 All edges
that become saturated by this process are deleted	 This pro�
cess is then repeated on each vertex from which �ow was taken
during the saturation of the edges into v� and so on all the
way back to s	 It is always possible to pull all d units of �ow
all the way back to s� since every vertex has capacity at least
d	

Either all incoming edges of v or all outgoing edges of v are satu�
rated and hence deleted� so v and all its remaining incident edges
can be deleted from the level graph� and the capacities of the neigh�
bors updated	 Go to �	

It takes O�m� time to compute the residual graph for the current �ow
and level graph using BFS	 Using Fibonacci heaps� it takes O�n logn� time
amortized over all iterations of the loop to �nd and delete a vertex of minimum
capacity	 It takes O�m� time over all iterations of the loop to delete all the
fully saturated edges� since we spend O��� time for each such edge	 It takes
O�n�� time over all iterations of the loop to do the partial saturations� because
it is done at most once in step � at each vertex for each choice of v in step �	

Note that when we delete edges� we must decrement the capacities of
neighboring vertices� this is done using the decrement facility of Fibonacci
heaps	

The loop thus achieves a blocking �ow in O�n�� time	 As before� at most
n blocking �ows have to be computed� because the distance from s to t in the
level graph increases by at least one each time	 This gives an overall worst�case
time bound of O�n��	

The max �ow problem is still an active topic of research	 Although O�n��



��� Lecture �� Still More on Max Flow

remains the best known time bound for general graphs� new approaches to the
max �ow problem and better time bounds for sparse graphs have appeared
more recently ���� ��� �� ��� ��� ��	

��� Applications of Max Flow

Bipartite Matching

De�nition ���	 A matchingM of a graph G is a subset of edges such that no
two edges in M share a vertex	 We denote the size of M by jM j	 A maximum
matching is one of maximum size	 �

We can use any max �ow algorithm to produce a maximum matching in
a bipartite graph G $ �U� V� E� as follows	 Add a new source vertex s and a
new sink vertex t� connect s to every vertex in U � and connect every vertex
in V to t	 Assign every edge capacity �	 The edges from U to V used by a
maximum integral �ow give a maximum matching	

Minimum Connectivity

Let G $ �V�E� be a connected undirected graph	 What is the least number
of edges we need to remove in order to disconnect G# This is known as the
minimum connectivity problem	

The minimum connectivity problem can be solved by solving n 
 � max
�ow problems	 Replace each undirected edge with two directed edges� one in
each direction	 Assign capacity � to each edge	 Let s be a �xed vertex in V
and let t range over all other vertices	 Find the max �ow for each value of t�
and take the minimum over all choices of t	 This also gives a minimum cut�
which gives a solution to the minimum connectivity problem	




