Lecture 5 Shortest Paths and Transitive
Closure

5.1 Single-Source Shortest Paths

Let G = (V,E) be an undirected graph and let ¢ be a function assigning
a nonnegative length to each edge. Extend ¢ to domain V x V' by defining
{(v,v) = 0 and (u,v) = oo if (u,v) € E. Define the length® of a path
p = e1ey...e, to be £(p) = Y, l(e;). For u,v € V, define the distance
d(u,v) from u to v to be the length of a shortest path from u to v, or oo if
no such path exists. The single-source shortest path problem is to find, given
s € V, the value of d(s,u) for every other vertex u in the graph.

If the graph is unweighted (i.e., all edge lengths are 1), we can solve the
problem in linear time using BFS. For the more general case, here is an algo-
rithm due to Dijkstra [28]. Later on we will give an O(m +nlogn) implemen-
tation using Fibonacci heaps. The algorithm is a type of greedy algorithm: it
builds a set X vertex by vertex, always taking vertices closest to X.

2In this context, the terms “length” and “shortest” applied to a path refer to ¢, not the
number of edges in the path.

25

26 LECTURE 5 SHORTEST PATHS AND TRANSITIVE CLOSURE

Algorithm 5.1 (Dijkstra’s Algorithm)

X = {sh

D(s) :=0;

for each u € V' — {s} do
D(u) := {(s,u);

while X # V do
let w € V — X such that D(u) is minimum;
X =X U{u};
for each edge (u,v) with v € V — X do
D(v) := min(D(v), D(u) + £(u,v))
end while

The final value of D(u) is d(s,u). This algorithm can be proved correct by
showing that the following two invariants are maintained by the while loop:

e for any u, D(u) is the distance from s to u along a shortest path through
only vertices in X;

o forany u € X, v ¢ X, D(u) < D(v).

5.2 Reflexive Transitive Closure

Let E denote the adjacency matrix of the directed graph G = (V, E). Using
Boolean matrix multiplication, the matrix E? has a 1 in position uwv iff there
is a path of length exactly 2 from vertex u to vertex v; i.e., iff there exists a
vertex w such that (u,w), (w,v) € E. Similarly, one can prove by induction
on k that (E*),, = 1 iff there is a path of length exactly k from u to v.
The reflexive transitive closure of G is
E* = IVEVE*V---
= IVEVE*V---vVE"!
(IvE)™!.

The infinite join is equal to the finite one because if there is a path connecting
u and v, then there is one of length at most n — 1.

Suppose that two n x n Boolean matrices can be multiplied in time M (n).
Then E* = (I V E)"! can be calculated in time O(M (n)logn) by squaring
E logn times. We will show below how to calculate E* in time O(M(n)).
Conversely, if there is an algorithm to compute E* in time T'(n), then M (n)
is O(T'(n)) (under the reasonable assumption that M (3n) is O(M(n))): to
multiply A and B, place them strategically into a 3n x 3n matrix, then take
its reflexive transitive closure:

0 A
0 0
0 0

*

0 I A AB
B = 0 I B
0 0 0 I

LECTURE 5 SHORTEST PATHS AND TRANSITIVE CLOSURE 27

The product AB can be read off from the upper right-hand block.
Here is a divide and conquer algorithm to find E* in time M (n).

Algorithm 5.2 (Reflexive Transitive Closure)

1. Divide E into 4 submatrices A, B, C, D of size roughly § x & such
that A and D are square.

- [t

2. Recursively compute D*. Compute
F = A+ BD*C.
Recursively compute F'™.
3. Set

F* | F*BD*

* o
BT = D*CF* ‘ D* + D*CF*BD*

Essentially, we are partitioning the set of vertices into two disjoint sets U
and V', where A describes the edges from U to U, B describes edges from U
to V, C describes edges from V to U, and D describes edges from V to V.
We compute reflexive transitive closures on these sets recursively and use this
information to describe the reflexive transitive closure of E. Note that we
compute two reflexive transitive closures, a few matrix multiplications (whose
complexity is given by M) and a few matrix additions (whose complexity is
assumed to be quadratic) of matrices of roughly half the size of E. This gives
the recurrence

T(n) = 27(3)+cM(5)+d(5)’

where ¢ and d are constants. Under the quite reasonable assumption that
M (2n) > 4M(n), the solution to this recurrence is O(M (n)).

5.3 All-Pairs Shortest Paths

Let E denote the adjacency matrix of a directed graph with edge weights.
Replace the 1’s in E by the edge weights and the 0’s by co. Apply Algorithm
5.2 to calculate E*, except use + instead of A and min instead of V. We will
show next time that this solves the all-pairs shortest path problem.

