Lecture 31 Csanky’s Algorithm

In 1976, Csanky gave a parallel algorithm to invert matrices [26]. This was one
of the very first NC' algorithms. It set the stage for a large body of research in
parallel linear algebra that culminated with Mulmuley’s 1986 result that the
rank of a matrix over an arbitrary field can be computed in NC' [82].

In this lecture we will develop Csanky’s algorithm. Along the way, we
give some NC' algorithms for problems of independent interest, including the
calculation of the characteristic polynomial and determinant of a matrix and
the solution of linear recurrences. First we recall some basic NC' algorithms:

Inner product The inner product of two vectors a = (ay,...,a,) and
b = (by,...,b,) can be computed in O(logn) parallel arithmetic steps by
n processors. First, produce in parallel the products a;b;, 1 < i < n; then add
the products in a treelike fashion.

Matrix multiplication If A is an m X n matrix and B is an n X p matrix,
their product AB can be computed by O(mpn) processors in O(logn) time.
AB has mp entries, each obtained as the inner product of a row of A and a
column of B.

Powers of A The powers A', A%, ..., A" of an nxn matrix A can be obtained
as the products of prefixes of the n-component sequence (A, A, ..., A). This
can be accomplished in O(log®n) time by O(n*) processors arranged in a
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parallel prefix circuit of width n in which the associative operation is n x n
matrix multiplication.

31.1 Inversion of Lower Triangular Matrices

Given an n x n lower triangular matrix A, break it up into submatrices

B0
+ = o]
where Bis 5] x |5], Cis [5] x|5], and Dis [§] x [5]. Recursively compute

2 2
B~! and D! in parallel. Then

o B! |0
AT = l—D‘ICB‘l\D‘l ‘

The parallel computation time of this algorithm satisfies the relation
n n

2 2)

where T'(%) is the time needed to invert B and D in parallel and 2M (%) is the
time needed to form the matrix product —D~'C'B~'. With O(n?) processors,
we have M(n) = O(logn), whence T'(n) = O(log”n).

T(n) = T(=)+2M(

31.2 Solution of Linear Recurrences

It may seem surprising that the n'® term of a linear recurrence such as the
Fibonacci sequence Fy =1, F} =1, F,, 1o = F,,11 + F, should be computable
without first computing the first n — 1 terms. In fact, the n'"® term of any
linear recurrence can be computed in parallel polylog time.

A general linear recurrence is a system of the form

r =

To = 91X + Co

T3 = Q3171 + a327T2 + C3

Tpn = GuT1+ -+ Qpp-1Tp-1 + Cp

where the a;; and ¢; are given, and we wish to solve for the z;. For example,
the Fibonacci sequence is given by the system ¢; = ¢ = 1 and ¢; = 0 for
i >3, ai;1 = a;;2 =1 for i >3, and all other a;; = 0.

Let a;; = 0 for j > i, let A be the n x n matrix (a;;), let « be the vector
(x;), and let ¢ be the vector (¢;). The system above is then equivalent to the
matrix-vector equation

Ar+c = o,
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or equivalently,
c = (I-Ax.

The matrix I — A is lower triangular with 1’s on the diagonal, and thus can be
inverted in NC' by the method described in the previous section. This allows
us to solve for x:

v = (I-A)'c.

31.3 The Characteristic Polynomial of a Matrix

We give a linear recurrence for the coefficients of the characteristic polynomial
of a given matrix A, which can then be solved by the method of the previous
section. This linear recurrence was known to Sir Isaac Newton.

The characteristic polynomial of a matrix A is defined to be

det (1‘[ — A) = " — Sll'n_l —+ 321'”_2 — .o+ Sn,
n
i=1
where z is an indeterminate, Ay, ..., A, are the eigenvalues of A (multiplicities

counted), and det B is the determinant of B. The coefficient s; is called the
trace of A and is denoted tr A. It is both the sum of the eigenvalues and the
sum of the diagonal elements of A:

s1 = trA

n

= Tu
i=1
n

= Zaiia
i=1

so it can be easily computed in NC. It can also be shown that A" is an
eigenvalue of A™ of the same multiplicity as A; of A, therefore

rA™ = STAr.
=1

The constant coefficient s,, is the determinant of A and is the product of the
eigenvalues:

S, = det A

=1
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The intermediate coefficients are called the elementary symmetric polynomials
in A, ..., A\, and are given by

Sp = DR VAEEED

1<i < <ip<n

in other words, the sum of all products of k-element submultisets of the mul-
tiset of eigenvalues of A.

Define
o= Z iy Aiy = A AT
1< <+ <ip<n
J&{in, . ig}
At the extremes,
Y = (n—k)sy
o = trA™.
Then
sp - tr A™

- (3 AilAiQ---Am-(_ilA?)

1<i < <ip<n

- Z AiyAig - )\ik A;’n + Z AiyAig - )‘ik A;’n
1< <+ <ip<n 1< <+ <ip<n
jg{il,...,ik} jE{il,...,ik}
= [+
It follows that
sp-tr A — s tr A 4+ 55 o -tr A2 — - gy - tr AP o AF
= (R+fe=1) = (fa+ i)+ (T +)Ff
= f;
= (n—k)sg .
This gives a recurrence for s; in terms of sy, ..., sk_1:
1 2 k
sy = E(sk_l-trA—sk_g-trA + -t tr AY) . (39)

The tr A™ can be computed in NC by computing the powers of A using parallel
prefix and summing the diagonal elements. The recurrence (39) can then be
solved using the method of the previous section.
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31.4 Inversion of Arbitrary Nonsingular Matrices

We use the Cayley-Hamilton Theorem, which says that every matrix satisfies
its characteristic equation:

A" — s AV A2 — o F s, Ats,] = 0.

Multiplying by A~! and rearranging terms, we get

1
Al = —(sp1d — 8 0A+--- £ 51 A" 2 F Anil) . (40)

STL
The coefficients s, of the characteristic polynomial and powers of A are com-
puted by the method of the previous section. The matrix polynomial (40)
can be computed in time O(logn) using O(n?) processors. The complete al-
gorithm to compute A~! from A runs in O(log” n) parallel arithmetic steps on
O(n*) processors.



