
Lecture �� Csanky
s Algorithm

In ��
�� Csanky gave a parallel algorithm to invert matrices ����	 This was one
of the very �rst NC algorithms	 It set the stage for a large body of research in
parallel linear algebra that culminated with Mulmuley�s ���� result that the
rank of a matrix over an arbitrary �eld can be computed in NC ����	

In this lecture we will develop Csanky�s algorithm	 Along the way� we
give some NC algorithms for problems of independent interest� including the
calculation of the characteristic polynomial and determinant of a matrix and
the solution of linear recurrences	 First we recall some basic NC algorithms


Inner product The inner product of two vectors a $ �a�� � � � � an� and
b $ �b�� � � � � bn� can be computed in O�logn� parallel arithmetic steps by
n processors	 First� produce in parallel the products aibi� � � i � n� then add
the products in a treelike fashion	

Matrix multiplication If A is an m	 n matrix and B is an n	 p matrix�
their product AB can be computed by O�mpn� processors in O�logn� time	
AB has mp entries� each obtained as the inner product of a row of A and a
column of B	

Powers of A The powers A�� A�� � � � � An of an n	nmatrixA can be obtained
as the products of pre�xes of the n�component sequence �A�A� � � � � A�	 This
can be accomplished in O�log� n� time by O�n�� processors arranged in a

���
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parallel pre�x circuit of width n in which the associative operation is n 	 n
matrix multiplication	

���� Inversion of Lower Triangular Matrices

Given an n	 n lower triangular matrix A� break it up into submatrices

A $

�
B �
C D

�

where B is bn
�
c	bn

�
c� C is dn

�
e	bn

�
c� and D is dn

�
e	dn

�
e	 Recursively compute

B�� and D�� in parallel	 Then

A�� $

�
B�� �


D��CB�� D��

�
�

The parallel computation time of this algorithm satis�es the relation

T �n� $ T �
n

�
� " �M�

n

�
�

where T �n
�
� is the time needed to invert B and D in parallel and �M�n

�
� is the

time needed to form the matrix product 
D��CB��	 With O�n�� processors�
we have M�n� $ O�logn�� whence T �n� $ O�log� n�	

���� Solution of Linear Recurrences

It may seem surprising that the nth term of a linear recurrence such as the
Fibonacci sequence F� $ �� F� $ �� Fn�� $ Fn�� " Fn should be computable
without �rst computing the �rst n 
 � terms	 In fact� the nth term of any
linear recurrence can be computed in parallel polylog time	

A general linear recurrence is a system of the form

x� $ c�

x� $ a��x� " c�

x� $ a��x� " a��x� " c�
			

xn $ an�x� " � � �" an�n��xn�� " cn

where the aij and ci are given� and we wish to solve for the xi	 For example�
the Fibonacci sequence is given by the system c� $ c� $ � and ci $ � for
i � �� ai�i�� $ ai�i�� $ � for i � �� and all other aij $ �	

Let aij $ � for j � i� let A be the n 	 n matrix �aij�� let x be the vector
�xi�� and let c be the vector �ci�	 The system above is then equivalent to the
matrix�vector equation

Ax " c $ x �
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or equivalently�

c $ �I 
 A�x �

The matrix I
A is lower triangular with ��s on the diagonal� and thus can be
inverted in NC by the method described in the previous section	 This allows
us to solve for x


x $ �I 
 A���c �

���� The Characteristic Polynomial of a Matrix

We give a linear recurrence for the coe�cients of the characteristic polynomial
of a given matrix A� which can then be solved by the method of the previous
section	 This linear recurrence was known to Sir Isaac Newton	

The characteristic polynomial of a matrix A is de�ned to be

det �xI 
 A� $ xn 
 s�x
n�� " s�x

n�� 
 � � � � sn

$
nY
i
�

�x
 �i�

where x is an indeterminate� ��� � � � � �n are the eigenvalues of A �multiplicities
counted�� and det B is the determinant of B	 The coe�cient s� is called the
trace of A and is denoted tr A	 It is both the sum of the eigenvalues and the
sum of the diagonal elements of A


s� $ tr A

$
nX
i
�

�i

$
nX
i
�

aii �

so it can be easily computed in NC 	 It can also be shown that �mi is an
eigenvalue of Am of the same multiplicity as �i of A� therefore

tr Am $
nX
i
�

�mi �

The constant coe�cient sn is the determinant of A and is the product of the
eigenvalues


sn $ det A

$
nY
i
�

�i �
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The intermediate coe�cients are called the elementary symmetric polynomials
in ��� � � � � �n and are given by

sk $
X

��i��


�ik�n
�i��i� � � ��ik �

in other words� the sum of all products of k�element submultisets of the mul�
tiset of eigenvalues of A	

De�ne

fmk $
X

� � i� � 
 
 
 � ik � n

j �� fi�� � � � � ikg

�i��i� � � ��ik�mj �

At the extremes�

f �k $ �n
 k�sk

fm� $ tr Am �

Then

sk � tr Am

$ �
X

��i��


�ik�n
�i��i� � � ��ik� � �

nX
j
�

�mj �

$
X

� � i� � 
 
 
 � ik � n

j �� fi�� � � � � ikg

�i��i� � � ��ik�mj "
X

� � i� � 
 
 
 � ik � n

j � fi�� � � � � ikg

�i��i� � � ��ik�mj

$ fmk " fm��
k�� �

It follows that

sk � tr A� 
 sk�� � tr A� " sk�� � tr A� 
 � � � � s� � tr Ak�� " tr Ak

$ �f �k " fk 
 ���
 �f �k�� " f �k��� " � � � � �fk��� " fk� �" fk�
$ f �k
$ �n
 k�sk �

This gives a recurrence for sk in terms of s�� � � � � sk��


sk $
�

k
�sk�� � tr A
 sk�� � tr A� " � � � � tr Ak� � ����

The tr Am can be computed in NC by computing the powers of A using parallel
pre�x and summing the diagonal elements	 The recurrence ���� can then be
solved using the method of the previous section	
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���� Inversion of Arbitrary Nonsingular Matrices

We use the Cayley�Hamilton Theorem� which says that every matrix satis�es
its characteristic equation


An 
 s�A
n�� " s�A

n�� 
 � � � " sn��A� snI $ � �

Multiplying by A�� and rearranging terms� we get

A�� $
�

sn
�sn��I 
 sn��A" � � � � s�A

n�� " An��� � ����

The coe�cients sk of the characteristic polynomial and powers of A are com�
puted by the method of the previous section	 The matrix polynomial ����
can be computed in time O�logn� using O�n�� processors	 The complete al�
gorithm to compute A�� from A runs in O�log� n� parallel arithmetic steps on
O�n�� processors	


