
Lecture �� Chistovs Algorithm

Many important computational problems in algebra �such as the solution of
polynomial equations� depend strongly on basic algorithms in linear algebra	
In turn� many problems in linear algebra reduce to the computation of the
rank of a matrix	 This problem thus occupies a central position in computa�
tional algebra	 NC algorithms for matrix rank were given by Ibarra� Moran�
and Rosier in ���� for matrices over the complex numbers ���� and over gen�
eral �elds in ���� by Mulmuley ����	 We will devote a future lecture to this
topic� but for now we lay the groundwork by showing how to calculate the
characteristic polynomial of a matrix over an arbitrary �eld in NC 	

The major limitation of Csanky�s algorithm for computing the characteris�
tic polynomial of a matrix is that it does not work in all �elds� since it involves
a division by k in ����	 This won�t be possible for example if the �eld is Zp and
k is a multiple of p	 Berkowitz ���� and Chistov ���� gave the �rst deterministic
NC algorithms for computing characteristic polynomials over arbitrary �elds	
Here we present Chistov�s method ����	

Recall that the characteristic polynomial of A� denoted �A�x�� is de�ned
by


�A�x� $ det �xI 
 A�

$ xn 
 s�x
n�� " s�x

n�� 
 � � � � sn �

We will compute the polynomial that has the same coe�cients� but in reverse

��
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order


xn�A�
�

x
� $ �
 s�x " s�x

� " � � � � snx
n

$ det �I 
 xA� �

De�ne B $ I
xA and let Bm denote the m	m submatrix in the lower right
corner of B


B�

�
B�

�� � �
Bn

�

Let Am be de�ned in the same way from A	 Then Bm $ Im 
 xAm	 De�ne
'm $ det Bm	

Cramer�s rule gives a useful formula for the inverse of a matrix C in terms
of determinants of its submatrices


C��
ij $ �
��i�j det Cji

det C

where Cji denotes the submatrix obtained from C by removing the jth row
and ith column	 Applying Cramer�s rule� we get

�B��
m ��� $

'm��
'm

�

But wait� this is all a bit suspicious� since Bm and 'm contain the indeter�
minate x	 How can we invert a matrix with indeterminates# To make sense
of this� we have to work in the �eld of rational functions over the base �eld k	
This will let us divide by polynomials	 The rational functions over k are the
formal fractions

k�x� $



p

q

����� p� q � k�x�� q �$ �

�
�

or more accurately� the equivalence classes of such fractions obtained by iden�
tifying p��q� and p��q� if p�q� $ p�q�	 This construction is ���, analogous to
the construction of the rational numbers from the integers	

Using the formal power series expansion of rational functions� the inverse
of Bm can be expressed as an in�nite formal sum

B��
m $

�X
i�

xiAi
m � ����
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To convince yourself that this works� multiply ���� by Bm $ Im 
 xAm	 The
expression ���� denotes a matrix of rational functions� because Bm is invertible
as a linear map over the �eld k�x�
 its determinant is 'm �$ �� as can be seen
by evaluating at x $ �	

We can express ��'n� the determinant of B��
n � as a telescoping product

like this


�

'n
$

'n��
'n

� 'n��
'n��

� � � '�

'�

$ �B��
n ��� � �B��

n����� � � � �B��
� ���

$ �
�X
i�

xiAi
n��� � �

�X
i�

xiAi
n����� � � � �

�X
i�

xiAi
���� ����

$ �
 xH�x� � ����

where H is a humongous power series	 The last step is justi�ed by observing
that the constant coe�cients of all the factors in ���� are �� therefore the
constant coe�cient of ���� is �	 Now recall that the polynomial we were
originally looking for was 'n� which is the inverse of ����	 We can therefore
express 'n as a power series in terms of H�x�


'n $
�X
i�

xiH�x�i

$ �
 s�x " s�x
� " � � � � snx

n

and we know that the power series is a polynomial� so that all coe�cients are
zero after a certain point	 Thus� despite all the in�nite power series we have
been using� all the terms after xn vanish in the result	 Therefore if we do all
the calculations mod xn��� and take only the �rst n " � terms of each series�
we will still get the same answer	

This can be turned into a fast parallel algorithm� and since it involves no
divisions� it will work in arbitrary �elds	

���� The Characteristic Polynomial and Matrix Rank

The signi�cance of the characteristic polynomial in matrix rank calculations
is summed up in the following key lemma	

Lemma 	��� Let B be a square matrix over a 
eld� If rankB $ rankB��
then rankB $ n 
 k� where xk is the highest power of x that divides the
characteristic polynomial �B�x��

This lemma allows us to calculate the rank of a matrix by calculating its
characteristic polynomial� provided its square has the same rank	 A proper
proof of this lemma would span a good portion of a �rst course in linear
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algebra� including Jordan canonical form and the Cayley�Hamilton Theorem�
so it is a bit beyond our scope	 Nevertheless� here it is in a nutshell	

When an n	n matrix B acts as a linear map on the vector space kn� some
vectors may be annihilated	 These form a linear subspace called the kernel of
B and denoted ker B	 The dimension of this subspace is n
 rank B	 Vectors
that are not annihilated by B get mapped around� and some may be mapped
into the kernel� so that if the space is hit with B a second time� those vectors
will be wiped out	 The proviso rankB� $ rank B in Lemma ��	� says that
this does not happen	 In other words� if a vector is ever going to be wiped
out by some power of B� then it is already wiped out by B	 For any B� the
degree of the highest power of x that divides the characteristic polynomial of
B is the dimension of the subspace of all vectors that ever get wiped out by
some power of B	 Thus if rank B� $ rank B� then this subspace is just the
kernel of B� and its dimension is n
 rank B	

The key property here is that the degree of the highest power of x that
divides �B is the dimension of the subspace of all vectors that ever get wiped
out by some power of B	 Let�s give this subspace a name


E� $
�	
i�

ker Bi

$ ker Bn �

The last equation follows from the fact that the subspaces ker Bi are ordered
by inclusion� ker Bi $ n 
 dim imBi �imBi denotes the image of the whole
space under the map Bi�� and the image can only shrink in dimension n times
before it disappears completely	

Another way of stating our key property is that dimE� is the multiplicity
of � as an eigenvalue of B	 More generally� for each eigenvalue � of B� we can
de�ne

E� $
�	
i�

ker ��I 
B�i

$ ker ��I 
B�n �

The subspace E� is called the generalized eigenspace of �� and consists of all
vectors of kn that are annihilated by some power of the matrix �I 
 B	 The
kernel of �I 
 B is called the eigenspace of �	

Two nice things about the subspaces E� are that

�i� they are setwise invariant under the action of any matrix of the form
�I 
B� and

�ii� every vector can be represented uniquely as a sum of vectors� one from
each generalized eigenspace	
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Property �i� says that hitting the subspace E� repeatedly with the matrix
�I 
 B does not move any vector outside of E�� but keeps shrinking it until
it �nally disappears� and if � �$ �� then �I 
B is a bijection on E�	 Property
�ii� says that kn is the direct sum of the subspaces E�� in symbols�

kn #$
M
�

E�

where #$ denotes isomorphism of vector spaces and
L

denotes direct sum	
Now pick a new basis consisting of vectors in the subspaces E�	 Under

the change of basis� because of property �i�� B becomes block diagonal with
a block for each eigenvalue �	 �Judicious choice of these basis elements will
even give us Jordan canonical form� with eigenvalues on the diagonal� ��s
and ��s on the o��diagonal just above� and ��s elsewhere�	 The size of the
block corresponding to � is the dimension of E�	 The change of basis is
e�ected by a similarity transformation B �� U��BU � which does not change
the characteristic polynomial


det �xI 
 U��BU� $ det U���xI 
 B�U

$ det U�� � det �xI 
B� � det U
$ det �xI 
 B� �

But the characteristic polynomial of a block diagonal matrix is the product of
the characteristic polynomials of the blocks� which are �x
 ��dimE�	 Thus

�B�x� $
Y
�

�x
 ��dimE� � ����

If one of the eigenvalues is � �i�e�� if B has a nontrivial kernel�� then xdimE�

and no higher power of x will divide �B	 This is what we wanted to show	
This conclusion also leads to an understanding of the Cayley�Hamilton

Theorem
 every matrix satis�es its characteristic equation	 From ���� we get

�B�B� $
Y
�

�B 
 �I�dimE�

$ �Y
�

��I 
 B�dimE� �

Applied to the whole space kn� the factor

��I 
 B�dimE�

wipes out E� and �xes the other generalized eigenspaces setwise	 Applying
�B�B� to kn applies these factors for each eigenvalue � in succession� which
successively wipe out all the E�� leaving nothing	 Thus �B�B� is the zero
matrix	


