Lecture 32 Chistov’s Algorithm

Many important computational problems in algebra (such as the solution of
polynomial equations) depend strongly on basic algorithms in linear algebra.
In turn, many problems in linear algebra reduce to the computation of the
rank of a matrix. This problem thus occupies a central position in computa-
tional algebra. NC' algorithms for matrix rank were given by Ibarra, Moran,
and Rosier in 1980 for matrices over the complex numbers [53] and over gen-
eral fields in 1986 by Mulmuley [82]. We will devote a future lecture to this
topic, but for now we lay the groundwork by showing how to calculate the
characteristic polynomial of a matrix over an arbitrary field in NC.

The major limitation of Csanky’s algorithm for computing the characteris-
tic polynomial of a matrix is that it does not work in all fields, since it involves
a division by £ in (39). This won’t be possible for example if the field is Z, and
k is a multiple of p. Berkowitz [11] and Chistov [18] gave the first deterministic
NC' algorithms for computing characteristic polynomials over arbitrary fields.
Here we present Chistov’s method [18].

Recall that the characteristic polynomial of A, denoted x(z), is defined
by:

xa(x) = det (xl — A)

= 2" — s 2" P st — - £, .

We will compute the polynomial that has the same coefficients, but in reverse
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order:

1
SU”XA(;) = 1—sx+ s3>+ £s,2"
= det (I —zA) .

Define B = [ — x A and let B,, denote the m x m submatrix in the lower right
corner of B:

o
B, B By
Let A,, be defined in the same way from A. Then B,, = I,, — ©A,,. Define
A,, = det B,,.
Cramer’s rule gives a useful formula for the inverse of a matrix C' in terms

of determinants of its submatrices:
ol = (_1)i+j%
4 det C

where 6]@' denotes the submatrix obtained from C' by removing the j* row
and '" column. Applying Cramer’s rule, we get

Am—l
AV

But wait, this is all a bit suspicious, since B,, and A,, contain the indeter-
minate x. How can we invert a matrix with indeterminates? To make sense
of this, we have to work in the field of rational functions over the base field k.
This will let us divide by polynomials. The rational functions over k are the
formal fractions

(B, ) =

Ha) = {g‘nqekMLq%O},

or more accurately, the equivalence classes of such fractions obtained by iden-
tifying p1/q1 and p2/qo if p1ga = p2gi. This construction is 100% analogous to
the construction of the rational numbers from the integers.

Using the formal power series expansion of rational functions, the inverse
of B,, can be expressed as an infinite formal sum

B! = Y 2'A, . (41)
1=0
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To convince yourself that this works, multiply (41) by B,, = I,, — ©A,,. The
expression (41) denotes a matrix of rational functions, because B,, is invertible
as a linear map over the field k(z): its determinant is A,, # 0, as can be seen
by evaluating at x = 0.

We can express 1/A,,, the determinant of B, !, as a telescoping product
like this:

[
3
[
3
>
7
e

= (B, Y- (B ) (Br
= (LetAn - (o - (e (42)
1 2H() : (43)

where H is a humongous power series. The last step is justified by observing
that the constant coefficients of all the factors in (42) are 1, therefore the
constant coefficient of (43) is 1. Now recall that the polynomial we were
originally looking for was A,,, which is the inverse of (43). We can therefore
express A, as a power series in terms of H(x):

A, = Y 2'H(z)
i=0
= 1—s1x+ 5922+ +s,2"

and we know that the power series is a polynomial, so that all coefficients are
zero after a certain point. Thus, despite all the infinite power series we have
been using, all the terms after £™ vanish in the result. Therefore if we do all
the calculations mod 2"*!, and take only the first n 4+ 1 terms of each series,
we will still get the same answer.

This can be turned into a fast parallel algorithm, and since it involves no
divisions, it will work in arbitrary fields.

32.1 The Characteristic Polynomial and Matrix Rank

The significance of the characteristic polynomial in matrix rank calculations
is summed up in the following key lemma.

Lemma 32.1 Let B be a square matriz over a field. If rank B = rank B2,
then rank B = n — k, where z* is the highest power of = that divides the
characteristic polynomial xp(x).

This lemma allows us to calculate the rank of a matrix by calculating its
characteristic polynomial, provided its square has the same rank. A proper
proof of this lemma would span a good portion of a first course in linear
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algebra, including Jordan canonical form and the Cayley-Hamilton Theorem,
so it is a bit beyond our scope. Nevertheless, here it is in a nutshell.

When an n x n matrix B acts as a linear map on the vector space k™, some
vectors may be annihilated. These form a linear subspace called the kernel of
B and denoted ker B. The dimension of this subspace is n — rank B. Vectors
that are not annihilated by B get mapped around, and some may be mapped
into the kernel, so that if the space is hit with B a second time, those vectors
will be wiped out. The proviso rank B? = rank B in Lemma 32.1 says that
this does not happen. In other words, if a vector is ever going to be wiped
out by some power of B, then it is already wiped out by B. For any B, the
degree of the highest power of x that divides the characteristic polynomial of
B is the dimension of the subspace of all vectors that ever get wiped out by
some power of B. Thus if rank B2 = rank B, then this subspace is just the
kernel of B, and its dimension is n — rank B.

The key property here is that the degree of the highest power of x that
divides x g is the dimension of the subspace of all vectors that ever get wiped
out by some power of B. Let’s give this subspace a name:

Ey = |Jker B’
1=0

= ker B" .

The last equation follows from the fact that the subspaces ker B* are ordered
by inclusion, ker B = n — dimim B® (im B* denotes the image of the whole
space under the map B?), and the image can only shrink in dimension n times
before it disappears completely.

Another way of stating our key property is that dim Fy is the multiplicity
of 0 as an eigenvalue of B. More generally, for each eigenvalue A\ of B, we can
define

Ey, = |Jker (\] - B)
=0

= ker (A — B)" .

The subspace E) is called the generalized eigenspace of A, and consists of all
vectors of k™ that are annihilated by some power of the matrix Al — B. The
kernel of A\I — B is called the eigenspace of .

Two nice things about the subspaces E) are that

(i) they are setwise invariant under the action of any matrix of the form
ul — B; and

(ii) every vector can be represented uniquely as a sum of vectors, one from
each generalized eigenspace.
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Property (i) says that hitting the subspace FE) repeatedly with the matrix
Al — B does not move any vector outside of E), but keeps shrinking it until
it finally disappears; and if u # A, then ul — B is a bijection on F). Property
(ii) says that k™ is the direct sum of the subspaces E); in symbols,

K" = PE,
A

where = denotes isomorphism of vector spaces and @ denotes direct sum.

Now pick a new basis consisting of vectors in the subspaces E). Under
the change of basis, because of property (i), B becomes block diagonal with
a block for each eigenvalue . (Judicious choice of these basis elements will
even give us Jordan canonical form, with eigenvalues on the diagonal, 1’s
and 0’s on the off-diagonal just above, and 0’s elsewhere). The size of the
block corresponding to A is the dimension of E,. The change of basis is
effected by a similarity transformation B — U~'BU, which does not change
the characteristic polynomial:

det (v1 —U™'BU) = detU'(zI — B)U
= detU '-det (2] — B)-detU
= det (I — B) .

But the characteristic polynomial of a block diagonal matrix is the product of
the characteristic polynomials of the blocks, which are (z — A\)4™#x. Thus

xp(x) = I;I(x — \)dimE (44)

If one of the eigenvalues is 0 (i.e., if B has a nontrivial kernel), then xdim o

and no higher power of x will divide y . This is what we wanted to show.
This conclusion also leads to an understanding of the Cayley-Hamilton
Theorem: every matrix satisfies its characteristic equation. From (44) we get

xs(B) = [[(B-A)"™™

= [[(\f - B)d™F
A
Applied to the whole space k", the factor

()\[ o B)dimEA

wipes out E) and fixes the other generalized eigenspaces setwise. Applying
xg(B) to k™ applies these factors for each eigenvalue \ in succession, which
successively wipe out all the E), leaving nothing. Thus ypz(B) is the zero
matrix.



