and

$$
\begin{aligned}
\operatorname{perm} A(4 ; 1) & =\operatorname{perm}\left[\begin{array}{ccc}
1 & \frac{-1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
\theta & \theta & 1
\end{array}\right] \\
& =\frac{1}{2} \cdot \frac{1}{z} \cdot \frac{1}{\frac{1}{2}} \cdot \frac{1}{z} \cdot 1 \\
& =0
\end{aligned}
$$

The full adjacency matrix B with submatrices A corresponding to these four-node widgets counts 1 for each good cycle cover in H and 0 for each bad cycle cover, thus its permanent is equal to $(k!)^{2}$ times the number of vertex covers in G.

We have argued that computing the permanent of a matrix containing elements in $\left\{-1,0, \frac{1}{2}, 1\right\}$ is $\# P$ hard, but there is still a ways to go. The next step is to note that

$$
\text { perm } 2 B=2^{n}: \operatorname{perm} B
$$

and this implies that computing the permanent of a matrix with elements in $\{-2,0,1,2\}$ is hard for $\# P$. We now show that this problem reduces to computing the permanents of polynomially many matrices over $\{0,1\}$. The reduction we use here is somewhat weaker than the one we have been using in that it will require several instances of the $\{0,1\}$ permanent problem to encode a given instance of the $\{-2,0,1,2\}$ permanent problem, but the reduction still has the property that any fast algorithm for the $\{0,1\}$ problem would give a fast algorithm for the $\{-2,0,1,2\}$ problem.

Let B be an $n \times n$ matrix over $\{-2,0,1,2\}$. A bound on the absolute value of perm B is given by the case in which each entry of B is 2 ; then

$$
\mid \text { perm } B \mid \leq 2^{n} n!
$$

It thus suffices to compute perm B modulo any $N>2^{n+1} n$!, and from this we will be able to recover the value of perm B.

Let $p_{1}, p_{2}, \ldots, p_{k}$ be the first k primes, where k is the least number such that

$$
N=\prod_{i=1}^{k} p_{i}>2^{n+1} n!
$$

It is not hard to show that $k \leq p+1$. Moreover, since $p_{m \pi}$ is $\Theta(m \log m)$ (see $[49, p .10]$), we can generate the first k primes in pelynomial time using the sieve of Eratosthenes. Before proceeding further, we need the following theorem.

Theorem 27.2 (Chinese Remainder Theorem) Let $m_{1}, m_{2}, \ldots, m_{k}$ be pairwise relatively prime positive integers, and let $m=\prod_{i=1}^{k} m_{i}$. Let \mathcal{Z}_{n}
denote the ring of integers modulo n. The ring \mathcal{Z}_{m} and the direct product of rings

$$
\mathcal{Z}_{m_{1}} \times \mathcal{Z}_{m_{2}} \times \cdots \times \mathcal{Z}_{m_{k}}
$$

are isomorphic under the function

$$
f: \mathcal{Z}_{m} \rightarrow \mathcal{Z}_{m_{1}} \times \mathcal{Z}_{m_{2}} \times \cdots \times \mathcal{Z}_{m_{k}}
$$

given by

$$
f(x)=\left(x \bmod m_{1}, x \bmod m_{2}, \ldots, x \bmod m_{k}\right)
$$

This just says that the numbers mod m and the k-tuples of numbers $\bmod m_{i}$, $1 \leq i \leq k$, are in one-to-one correspondence, and that arithmetic is preserved under the map f. For example, in the following table, we have compared \mathcal{Z}_{15} to $\mathcal{Z}_{3} \times \mathcal{Z}_{5}$.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$x \bmod 3$	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$x \bmod 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4

Note that each pair in $\mathcal{Z}_{3} \times \mathcal{Z}_{5}$ occurs exactly once. This is because 3 and 5 are relatively prime. Arithmetic is preserved as well: for example, 4 and 7 correspond to the pairs $(1,4)$ and $(1,2)$, respectively; multiplying these pairwise gives the pair $(1,3)(\bmod 3$ and 5 , respectively), which occurs under 13 ; and $4 \times 7=28=13(\bmod 15)$.

Also, f and f^{-1} are computable in polynomial time. To compute $f(x)$, we just reduce x modulo m_{1}, \ldots, m_{k}. To compute $f^{-1}\left(x_{1}, \ldots, x_{k}\right)$, we first compute, for each $1 \leq i \leq k$, integers s and t such that

$$
s m_{i}+t \prod_{\substack{1 \leq j \leq k \\ j \neq i}} m_{j}=1
$$

and take

$$
u_{i}=t \prod_{\substack{1 \leq j \leq k \\ j \neq i}} m_{j}
$$

The numbers s and t are available as a byproduct of the Euclidean algorithm. For each $1 \leq i, j \leq k, u_{i} \equiv 1 \bmod m_{i}$ and $u_{i} \equiv 0 \bmod m_{j}, i \neq j$. Take

$$
f^{-1}\left(x_{1}, \ldots, x_{k}\right)=x_{1} u_{1}+\cdots+x_{k} u_{k} \bmod m
$$

For further details and a proof of the Chinese Remainder Theorem see [3, pp. 289ff.].

