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Lecture 6

The Circuit Value Problem

In the early 1970s, Stephen Cook [31] and independently Leonid Levin [78]
showed that the Boolean satisfiability problem (SAT)—whether a given a
Boolean formula has a satisfying truth assignment—is NP-complete. Thus
Boolean satisfiability is in P iff P = NP . This theorem has become known
as the Cook–Levin theorem. Around the same time, Richard Karp [69]
showed that a large number of optimization problems in the field of oper-
ations research such as the traveling salesperson problem, graph coloring,
bin packing, and many others were all interreducible and therefore NP -
complete. These two milestones established the study of NP-completeness
as an important aspect of theoretical computer science. In fact, the question
of whether P = NP is today widely considered one of the most important
open questions in all of mathematics.

There is a theorem of Ladner [77] that plays the same role for the P =
NLOGSPACE or P = LOGSPACE question that the Cook–Levin theorem
plays for the P = NP question. The decision problem involved is the circuit
value problem (CVP): given an acyclic Boolean circuit with several inputs
and one output and a truth assignment to the inputs, what is the value of
the output? The circuit can be evaluated in deterministic polynomial time;
the theorem says that this problem is ≤log

m -complete for P . It follows from
the transitivity of ≤log

m that P = NLOGSPACE iff CVP ∈ NLOGSPACE
and P = LOGSPACE iff CVP ∈ LOGSPACE .
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Formally, a Boolean circuit is a program consisting of finitely many
assignments of the form

Pi := 0,

Pi := 1,

Pi := Pj ∧ Pk, j, k < i,

Pi := Pj ∨ Pk, j, k < i, or
Pi := ¬Pj , j < i,

where each Pi in the program appears on the left-hand side of exactly one
assignment. The conditions j, k < i and j < i ensure acyclicity. We want
to compute the value of Pn, where n is the maximum index.

Theorem 6.1 The circuit value problem is ≤log
m -complete for P.

Proof. We have already argued that CVP ∈ P . To show hardness, we will
reduce an arbitrary A ∈ P to CVP. Let M be a deterministic single-tape
polynomial-time-bounded TM accepting A, say with time bound nc. Let Γ
be the worktape alphabet of M and let Q be the set of states of M ’s finite
control. The transition function δ of M is of type δ : Q×Γ → Q×Γ×{L, R}.
Intuitively, δ(p, a) = (q, b, d) says, “When in state p scanning symbol a on
the tape, print b on that cell, move in direction d, and enter state q.” We
can encode configurations of M over a finite alphabet ∆ as usual.

Now given x of length n, think of the successive configurations of M
on input x as arranged in an (nc + 1) × (nc + 1) time/space matrix R
with entries in ∆. The ith row of R is a string in ∆nc+1 describing the
configuration of the machine at time i. The jth column of R describes what
is going on at tape cell j throughout the history of the computation.

For example, the ith row of the matrix might look like

� a b a a b

p

a b a a b a b �� �� ��

and the i + 1st might look like

� a b a a b b

q

b a a b a b �� �� ��

This would happen if δ(p, a) = (q, b, R). The elements of ∆ are thus of the
form

a
or

q

a
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for a ∈ Γ and q ∈ Q.
The conditions we will write down amount to a set of local consistency

conditions on (nc + 1) × (nc + 1) matrices over ∆. Each local consistency
condition is a relation on the entries of the matrix in a small neighbor-
hood of some location i, j. The conjunction of all these local consistency
conditions is enough to determine the matrix R uniquely.

Our circuit will involve Boolean variables

P a
ij , 0 ≤ i, j ≤ nc, a ∈ Γ,

Qq
ij , 0 ≤ i, j ≤ nc, q ∈ Q.

The variable P a
ij says, “The symbol occupying tape cell j at time i is a,”

and the variable Qq
ij says, “The machine is in state q scanning tape cell j

at time i.”
Now we write down a set of conditions in terms of the P a

ij and Qq
ij

describing all ways that the machine could be in state q scanning tape cell
j at time i or that the symbol occupying tape cell j at time i is a.

For 1 ≤ i ≤ nc, 0 ≤ j ≤ nc, and b ∈ Γ, we include the assignment

P b
ij :=

∨

δ(p,a)=(q,b,d)

(Qp
i−1,j ∧ P a

i−1,j) (6.1)

∨ (P b
i−1,j ∧

∧

p∈Q

¬Qp
i−1,j). (6.2)

in our circuit. Intuitively, this says, “The symbol occupying tape cell j at
time i is b if and only if either the machine was scanning tape cell j at time
i − 1 and printed b (clause (6.1)), or the machine was not scanning tape
cell j at time i − 1 and the symbol occupying that cell at time i − 1 was b
(clause (6.2)).” The join in (6.1) is over all states p, q ∈ Q, symbols a ∈ Γ,
and directions d ∈ {L, R} such that δ(p, a) = (q, b, d); that is, all situations
that would cause b to be printed.

For 1 ≤ i ≤ nc, 1 ≤ j ≤ nc − 1 (that is, ignoring the left and right
boundaries), and q ∈ Q, we include the assignment

Qq
ij :=

∨

δ(p,a)=(q,b,R)

(Qp
i−1,j−1 ∧ P a

i−1,j−1) (6.3)

∨
∨

δ(p,a)=(q,b,L)

(Qp
i−1,j+1 ∧ P a

i−1,j+1). (6.4)

Intuitively, this says, “The machine is scanning tape cell j at time i if and
only if either it was scanning tape cell j − 1 at time i − 1 and moved right
(clause (6.3)), or it was scanning tape cell j + 1 at time i − 1 and moved
left (clause (6.4)).” The join in (6.3) is over all states p ∈ Q and symbols
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a, b ∈ Γ such that δ(p, a) = (q, b, R); that is, all situations that would cause
the machine to move right and enter state q.

For j = 0, that is, for the leftmost tape cell, we define Qq
ij in terms of

(6.3) only. Similarly, for j = nc, we define Qq
ij in terms of (6.4) only.

This takes care of everything except the first row of the matrix. The
values P b

ij and Qq
ij are determined by the start configuration; these are the

inputs to the circuit. If x = a1 · · ·an, the start state is s, and the endmarker
and blank symbol are � and ��, respectively, we include

P�
0,0 := 1,

P b
0,0 := 0, b ∈ Γ − {�},

P
aj

0,j := 1, 1 ≤ j ≤ n,

P b
0,j := 0, b ∈ Γ − {aj}, 1 ≤ j ≤ n,

P ��
0,j := 1, n + 1 ≤ j ≤ nc,

P b
0,j := 0, b ∈ Γ − {��}, n + 1 ≤ j ≤ nc,

Qs
0,0 := 1

Qs
0,j := 0, 1 ≤ j ≤ nc,

Qq
0,j := 0, 0 ≤ j ≤ nc, q ∈ Q − {s}.

This gives a circuit. Assuming that the machine moves its head all the
way to the left before entering its accept state t, the Boolean value of

Qt
nc,0 ∨ Qt

nc,1

determines whether M accepts x.
The construction we have just given can be done in logspace. Even

though the circuit is polynomial size, it is highly uniform in the sense that
it is built of many identical pieces. The only differences are the indices i, j,
which can be written down in logspace. �

The Cook–Levin Theorem

Now we show how to derive the Cook–Levin theorem as a corollary of the
previous construction. We would like to show that the Boolean satisfiability
problem SAT—given a Boolean formula, does it have a satisfying truth
assignment?—is NP-complete. The two main differences between SAT and
CVP are:

(i) With SAT, the input values are not provided. The problem asks
whether there exist values making the formula evaluate to true.
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(ii) CVP is defined in terms of circuits and SAT is defined in terms of
formulas. The difference is that in circuits, Boolean values may be
used more than once. A circuit is represented as a labeled directed
acyclic graph (dag), whereas a formula is a labeled tree. Another way
to look at it is that a circuit allows sharing of common subexpressions.
The satisfiability problem is NP -complete, regardless of whether we
use circuits or formulas; but the problem of evaluating a formula on
a given truth assignment is apparently easier than CVP, since it can
be done in logspace (Homework 2, Exercise 3).

We define a circuit with unspecified inputs exactly as above, except that
we also include assignments

Pi := ?

denoting inputs whose value is unspecified.

Theorem 6.2 Boolean satisfiability is ≤log
m -complete for NP.

Proof. Boolean satisfiability is in NP , since we can guess a truth assign-
ment and verify that it satisfies the given formula or circuit in polynomial
time.

To show that the problem is ≤log
m -hard for NP , let A be an arbitrary set

in NP , and let M be a nondeterministic machine accepting A and running
in time nc. Assume without loss of generality that the nondeterminism is
binary branching. Then a computation path of M is specified by a string
in {0, 1}nc

.
Let M ′ be a deterministic machine that takes as input x#y, where

|y | = |x |c, and runs M on input x, using y to resolve the nondeterministic
choices and accepting if the computation path of M specified by y leads
to acceptance. By the construction of Theorem 6.1, there is a circuit that
has value 1 iff M ′ accepts x#y. Note from the construction that if |z | =
|y | = nc, the circuit constructed for x#z is identical to that for x#y
except for the inputs corresponding to y; making these inputs unspecified,
we obtain a circuit C(P1, . . . , Pnc) with unspecified inputs P1, . . . , Pnc such
that M accepts x if and only if there exist y1, . . . , ync ∈ {0, 1} such that
C(y1, . . . , ync) = 1.

We can transform the circuit into a formula by replacing each assign-
ment Pi := E with the clause Pi ↔ E and taking the conjunction of all
clauses obtained in this way. The resulting formula is satisfiable iff M ac-
cepts x. �

The Boolean satisfiability problem remains NP -hard even when re-
stricted to formulas in conjunctive normal form (CNF with at most three
literals per clause (3CNF) (Miscellaneous Exercise 10), whereas it is solv-
able in polynomial time for formulas in 2CNF (Homework 2, Exercise 2).
The satisfiability problem for 3CNF formulas is known as 3SAT.


