
Lecture 
 Binomial Heaps

Binomial heaps were invented in ��� by J	 Vuillemin �����	 They give a
data structure for maintaining a collection of elements� each of which has a
value drawn from an ordered set� such that new elements can be added and
the element of minimum value extracted e�ciently	 They admit the following
operations


makeheap�i� return a new heap containing only element i
�ndmin�h� return a pointer to the element of h of minimum value
insert�h� i� add element i to heap h
deletemin�h� delete the element of minimum value from h
meld�h� h�� combine heaps h and h� into one heap

E�cient searching for objects is not supported	
In the next lecture we will extend binomial heaps to Fibonacci heaps �����

which allow two additional operations


decrement�h� i�'� decrease the value of i by '
delete�h� i� remove i from heap h

We will see that these operations have low amortized costs	 This means
that any particular operation may be expensive� but the costs average out so
that over a sequence of operations� the number of steps per operation of each
type is small	 The amortized cost per operation of each type is given in the
following table


��



Lecture � Binomial Heaps ��

makeheap O���
�ndmin O���
insert O���
deletemin O�logn�
meld O��� for the lazy version

O�logn� for the eager version
decrement O���
delete O�logn�

where n is the number of elements in the heap	
Binomial heaps are collections of binomial trees� which are de�ned induc�

tively
 the ith binomial tree Bi consists of a root with i children B�� � � � � Bi��	

sB� ss
B� ss ss�

�
A

A

B� ss ss ss ss�
�

A
A

�
�

�
�

B�

It is easy to prove by induction that jBij $ �i	
If data elements are arranged as vertices in a tree� that tree is said to be

heap�ordered if the minimum value among all vertices of any subtree is found
at the root of that subtree	 A binomial heap is a collection of heap�ordered
binomial trees with a pointer min to the tree whose root has minimum value	
We will assume that all children of any vertex are arranged in a circular
doubly�linked list� so that we can link and unlink subtrees in constant time	

De�nition ��� The rank of an element x� denoted rank �x�� is the number
of children of x	 For instance� rank �root of Bi� $ i	 The rank of a tree is the
rank of its root	 �

A basic operation on binomial trees is linking	 Given two Bi�s� we can
combine them into a Bi�� by making the root of one Bi a child of the root of
the other	 We always make the Bi with the larger root value the child so as
to preserve heap order	 We never link two trees of di�erent rank	

�� Operations on Binomial Heaps

In the �eager meld version� the trees of the binomial heap are accessed
through an array of pointers� where the ith pointer either points to a Bi or
is nil	 The operation meld�h� h��� which creates a new heap by combining h
and h�� is reminiscent of binary addition	 We start with i $ �	 If either h or
h� has a B� and the other does not� we let this B� be the B� of meld�h� h��	
If neither h nor h� have a B�� then neither will meld�h� h��	 If both h and h�

have a B�� then meld�h� h�� will not� but the two B��s are linked to form a



�� Lecture � Binomial Heaps

B�� which is treated like a carry	 We then move on to the B��s	 At stage i�
we may have �� �� or � Bi�s from h and h�� plus a possible Bi carried from the
previous stage	 If there are at least two Bi�s� then two of them are linked to
give a Bi�� which is carried to the next stage� the remaining Bi� if it exists�
becomes the Bi of meld�h� h��	 The entire operation takes O�logn� time� be�
cause the size of the largest tree is exponential in the largest rank	 We will
modify the algorithm below to obtain a �lazy meld version� which will take
constant amortized time	

The operation insert�i� h� is just meld�h�makeheap�i��	
For the operation deletemin�h�� we examine the min pointer to x� the

root of some Bk	 Removing x creates new trees B�� � � � � Bk��� the children of
x� which are formed into a new heap h�	 The tree Bk is removed from the old
heap h	 Now h and h� are melded to form a new heap	 We also scan the new
heap to determine the new min pointer	 All this requires O�logn� time	

�� Amortization

The O�logn� bound on meld and deletemin is believable� but how on earth
can we do insert operations in constant time# Any particular insert opera�
tion can take as much as O�logn� time because of the links and carries that
must be done	 However� intuition tells us that in order for a particular insert
operation to take a long time� there must be a lot of trees already in the heap
that are causing all these carries	 We must have spent a lot of time in the
past to create all these trees	 We will therefore charge the cost of performing
these links and carries to the past operations that created these trees	 To the
operations in the past that created the trees� this will appear as a constant
extra overhead	

This type of analysis is known as amortized analysis� since the cost of a
sequence of operations is spread over the entire sequence	 Although the cost
of any particular operation may be high� over the long run it averages out so
that the cost per operation is low	

For our amortized analysis of binomial heaps� we will set up a savings
account for each tree in the heap	 When a tree is created� we will charge
an extra credit to the instruction that created it and deposit that credit to
the account of the tree for later use	 �Another approach is to use a potential
function� see �����	� We will maintain the following credit invariant


Each tree in the heap has one credit in its account	

Each insert instruction creates one new singleton tree� so it gets charged
one extra credit� and that credit is deposited to the account of the tree that
was created	 The amount of extra time charged to the insert instruction is
O���	 The same goes for makeheap	 The deletemin instruction exposes up
to logn new trees �the subtrees of the deleted root�� so we charge an extra



Lecture � Binomial Heaps �	

logn credits to this instruction and deposit them to the accounts of these
newly exposed trees	 The total time charged to the deletemin instruction is
still O�logn�	

We use these saved credits to pay for linking later on	 When we link a tree
into another tree� we pay for that operation with the credit associated with
the root of the subordinate tree	 The insert operation might cause a cascade
of carries� but the time to perform all these carries is already paid for	 We
end up with a credit still on deposit for every exposed tree and only O��� time
charged to the insert operation itself	

�� Lazy Melds

We can also performmeld operations in constant time with a slight modi�ca�
tion of the data structure	 Rather than using an array of pointers to trees� we
use a doubly linked circular list	 To meld two heaps� we just concatenate the
two lists into one and update the min pointer� certainly an O��� operation	
Then insert�h� i� is just meld�h�makeheap�i��	

The problem now is that unlike before� we may have several trees of the
same rank	 This will not bother us until we need to do a deletemin	 Since in
a deletemin we will need O�logn� time anyway to �nd the minimum among
the deleted vertex�s children� we will take this opportunity to clean up the
heap so that there will again be at most one tree of each rank	 We create an
array of empty pointers and go through the list of trees� inserting them one
by one into the list� linking and carrying if necessary so as to have at most
one tree of each rank	 In the process� we search for the minimum	

We perform a constant amount of work for each tree in the list in addition
to the linking	 Thus if we start with m trees and do k links� then we spend
O�m" k� time in all	 To pay for this� we have k saved credits from the links�
plus an extra logn credits we can charge to the deletemin operation itself�
so we will be in good shape provided m " k is O�k " logn�	 But each link
decreases the number of trees by one� so we end up with m 
 k trees� and
these trees all have distinct ranks� so there are at most logn of them� thus

m " k $ �k " �m
 k�

� �k " logn

$ O�k " logn� �


