ANNOUNCEMENT

Take home midterm starts today.
You may start the exam at 17:00
on any of Nov. 5, 8, 9, 10.
It will be emailed to you.
3 questions (easier than homework), 48 hours.
Turn in using CMS.
See pinned post on Ed Discussions for link to start time survey.
If you don’t answer the survey, your start date will be Nov. 10.

Prediction from expert advice.
Experts \(i = 1, \ldots, K\).
Time steps \(t = 1, \ldots, T\).
Rewards \(u(i, t) \in [0, 1]\).
Algorithm computes probability dist \(p_t(i)\)
over experts at time \(t\).
\(p_t(i)\) must depend only on \(\{u(j,s)\mid j \in [K], s \leq t\}\).
Goal: Make \(\sum_{t=0}^{T} \sum_{i=1}^{K} p_t(i) u(i,t) \) almost as large as \(\max \left\{ \sum_{t=1}^{T} u(i,t) \mid i \in [K] \right\} \).

Algorithm: Multiplicative weights

Let \(u(i,1:t) = \sum_{s=1}^{t} u(i,s) \) (cumulative reward of expert \(i \) at time \(t \)).

Convention: when \(t=0 \) \(u(i,1:t) = 0 \).

Let \(w(i,t) = (1+\varepsilon)^{u(i,1:t)} \).

\[p_t(i) = \frac{w(i,t-1)}{\sum_{j \in [K]} w(j,t-1)} \]

\[W(t) = \sum_{j \in [K]} w(j,t) \]

Let's think about \(\frac{W(t)}{W(t-1)} \)

\[W(t) = \sum_{j} w(j,t) = \sum_{j} (1+\varepsilon)^{u(j,1:t)} \]

\[= \sum_{j} (1+\varepsilon)^{u(j,1:t)} \cdot (1+\varepsilon)^{u(j,t-1)} \]

\[= \sum_{j} (1+\varepsilon)^{u(j,1:t-1)} \cdot (1+\varepsilon)^{u(j,t)} \]
\[
\begin{align*}
\frac{W(t)}{W(t-1)} &= \sum_j p_t(j) (1 + \varepsilon u(j, t)) \\
&\leq \sum_j p_t(j) (1 + \varepsilon u(j, t)) \\
&= 1 + \varepsilon \sum_{j \in [k]} p_t(j) u(j, t) \\
\ln W(t) - \ln W(t-1) &\leq \ln \left(1 + \varepsilon \sum_{j \in [k]} p_t(j) u(j, t)\right) \\
&\leq \varepsilon \sum_{j \in [k]} p_t(j) u(j, t) \\
\frac{1}{\varepsilon} \left[\ln W(t) - \ln W(0)\right] &\leq \sum_{t=1}^{T} \sum_{j \in [k]} p_t(j) u(j, t) \\
\text{ALG's payoff}
\end{align*}
\]
\[W(0) = \sum_{j \in [k]} w(j, 0) = \sum_{j \in [k]} (1 + \varepsilon)^0 = k. \]

\[W(T) = \sum_{j \in [k]} w(j, T) \]

\[\ln W(T) > \max \left\{ \ln w(j, T) \left| j \in [k] \right. \right\} \]

\[= \ln(1 + \varepsilon) \max \left\{ u(j, 1:T) \left| j \in [k] \right. \right\}. \]

\[\frac{1}{\varepsilon} \left[\ln(1 + \varepsilon) \max \left\{ u(j, 1:T) \right\} - \ln k \right] \leq \text{ALG's payoff} \]

In other words, \[\ln(1 + \varepsilon) > \varepsilon = \varepsilon^2 \text{ for } \varepsilon < 1 \]

\[\text{ALG's payoff} \geq \frac{\ln(1 + \varepsilon)}{\varepsilon} \cdot \text{(best expert's payoff)} - \frac{\ln k}{\varepsilon}. \]

\[\geq (1 - \varepsilon) \cdot \text{(best expert's payoff)} - \frac{\ln k}{\varepsilon}. \]
To use this to approximate min-congestion routing, let the algorithm impersonate 2 parties.

1. "Goalie" predicts an edge at each time t, using MW algorithm above.

2. "Router" knows goalie's prob dist of over edges, and chooses s_i-t_i path to minimize probability of containing goalie's edge.

$$u(e,s) = \begin{cases} \frac{1}{|e|} & \text{if } e \text{ belongs to path chosen in iteration } s \\ 0 & \text{if not} \end{cases}$$

use Dijkstra to solve this shortest path problem.
We want to compare
\[\max \{ e = (u,v) | \frac{\text{land}(u,v)}{\text{law}(u,v)} \} \]
with the value of the optimal solution, which was denoted by \(r \).