18 Oct 2021

NP-complete problems

Announcements
- PSET 3 to be released Fri., due in 2 weeks after that.
- Take-home midterm 2nd wk Nov.
- Final project after that.

The class NP consists of problems that involve computing a function \(F(x) : \{0,1\}^* \rightarrow \{0,1\}^* \) such that there exists a polynomial-time algorithm ("verifier") with two inputs \(V(x,y) \) where \(|y| \leq \text{poly}(|x|) \), s.t.

\[
F(x) = 1 \iff \exists y \in \{0,1\}^{\text{poly}(|x|)} \quad V(x,y) = 1.
\]

E.g., graph 3-colorability.

Input string \(x \) is the binary encoding of an undirected graph \(G \).

(E.g., adj matrix.)

\[
F(x) = \begin{cases}
1 & \text{if } G \text{ has a proper 3-coloring} \\
0 & \text{if not}
\end{cases}
\]
"Proper 3-coloring" means $V(G) \overset{h}{\rightarrow} \{0,1,2\}$ where h takes distinct values on the endpoints of every edge.

This belongs to NP because, e.g., $V(x,y)$ could take $x = \text{binary encoding of } G$ $y = \text{binary encoding of } h; V(G) \rightarrow \{0,1,2\}$ and V checks the colors on endpoints of each edge, makes sure they're different from each other.

$F(x) = 1 \iff \exists y \in \{0,1\}^{\text{poly}(\|x\|)} \quad V(x,y) = 1$

$F(x) = \bigvee_{y \in \{0,1\}^{\text{poly}(\|x\|)}} V(x,y) \quad (\text{NP})$

$F(x) = \bigwedge_{y \in \{0,1\}^{\text{poly}(\|x\|)}} V(x,y) \quad (\text{coNP})$

$F(x) = \sum_{y \in \{0,1\}^{\text{poly}(\|x\|)}} V(x,y) \quad (#P)$

$F(x) = \bigoplus_{y \in \{0,1\}^{\text{poly}(\|x\|)}} V(x,y) \quad (\oplus P)$
Reductions.
A polynomial-time Karp reduction from \(A \) to \(B \) is a function \(R : \text{inputs of } A \to \text{inputs of } B \) such that:
\[
A(x) = B(R(x)) \quad \forall x.
\]
and \(R \) runs in time \(\text{poly}(\text{size}(x)) \).

Aside. From now on a problem denoted by a letter such as \(A \) is assumed to have:
\[
\begin{align*}
\mathcal{X}_A & = \text{inputs} \to A \\
\mathcal{Y}_A & = \{ \text{potential solutions/certificates/witnesses} \}
\end{align*}
\]
\(\forall x \in \mathcal{X}_A \) is finite subset \(Y(x) \subseteq \mathcal{Y}_A \).

size: \(\mathcal{X}_A \to \mathbb{N} \)
\(\text{Graph} \to \# \text{ vertices} \)

enc: \(\mathcal{X}_A \cup \mathcal{Y}_A \to \{0,1\}^k \)
\(|\text{enc}(x)| \leq p(\text{size}(x)) \quad \forall x \)
\(|\text{enc}(y)| \leq q(\text{size}(x)) \quad \forall x \forall y \in Y(x) \)

where \(p, q \) are polynomials.
\(V_A(x,y) \): runs in time \(\text{poly}(\text{size}(x)) \).

For NP problems

\[
F(x) = \bigvee_{y \in Y(x)} V_A(x,y)
\]

Again: reduction satisfies \(A(x) = B(R(x)) \).

Notation: \(A \leq_P B \).

Note: This is a reflex trans relation.

(\(P \)-reductions can be composed.)

We write \(A \equiv_P B \) when \(A \leq_P B \) and \(B \leq_P A \).

This is an equivalence relation.

If \(C \) is a class of problem (e.g., NP)

a problem \(B \) is \(C \)-hard (e.g., \(NP \)-hard)

if every \(A \in C \) satisfies \(A \leq_P B \).

We say \(B \) is \(C \)-complete if \(B \in C \)

and \(B \) is \(C \)-hard.

(The maximal equivalent class of problems in \(C \),

ordered by \(\leq_p \).)
Def. If \(x_1, \ldots, x_n \) are Boolean vars

- a literal is one of the \(2n \) terms formed by \(x_1, \ldots, x_n \) and their negations \(\overline{x_1}, \ldots, \overline{x_n} \).

- a clause of width \(w \) is a term formed by combining \(w \) literals using the "or" \((\lor) \) operation.

\[x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \]

- a CNF formula is a conjunction of clauses.

A \(k \)-CNF formula is one whose clauses have width \(\leq k \).

\[(x_1 \lor \overline{x_2} \lor x_3) \land (x_3 \lor x_4 \lor \overline{x_5}) \]

is a \(3 \)-CNF.

The \(k \)-SAT problem asks: given a \(k \)-CNF, is there a truth assignment that satisfies it?

Theorem (Cook-Levin): \(k \)-SAT is NP-Complete for all \(k \geq 3 \).
Theorem (Valiant): \#PERF MATCHINGS is \#P-complete, even for bipartite graphs.

Showing \(B \) is \(\text{NP} \)-complete

1. Show \(B \in \text{NP} \) by designing a verifier \(V_B \).
2. Pick some \(A \) known to be \(\text{NP} \)-complete.
3. Design a reduction \(R \) showing that \(A \leq_p B \).