Online Matching

Bi-partite graph $G = (L, R, E)$ whose edge set is unknown!

$R = \{1, 2, \ldots, T\}$

At time $t \leq T$, vertex $t \in R$ arrives and reveals its set of neighbors $N(t) \subseteq L$. Algorithm must immediately decide:
- to add an edge (ij, t) to M for some $i \in N(t)$
- not to add any edge containing t (in that case t will never be matched).

We say an algorithm is (strictly) c-competitive if its matching, M, and the maximum matching, M^*, always obey:

You can't always pick a max matching online...
\[\#M_{\text{opt}} \leq c \left(\#M_{\text{alg}} \right) \]

for every input sequence. For randomized alg., this becomes

\[\#M_{\text{opt}} \leq c \cdot \mathbb{E}[\#M_{\text{alg}}]. \]

Example above shows that deterministic strictly c-competitive algorithms do not exist for \(c < 2 \).

Def. An algorithm is greedy if it always matches vertex \(t \) when possible.

Lemma. Any greedy alg. is strictly 2-competitive.

Proof. To prove, we will construct a function \(h : M_{\text{opt}} \to M_{\text{alg}} \) and show \(h \) is \((\leq 2)\)-to-1.
\(h(e) \triangleq \) any edge in \(M_{\text{alg}} \) that shares an endpoint with \(e \).

If \(e = (u, v) \in M_{\text{alg}} \), then \(h \) maps at most 2 edges in \(M_{\text{opt}} \) to \(e \): the edge of \(M_{\text{opt}} \) that has \(u \) as endpoint.

Greedy with uniform randomization can do badly.

As \(n \to \infty \), \(\mathbb{E}[\# M_{\text{alg}}] \sim n \)

\(\# M_{\text{opt}} = 2n \)
What to do?

RANKING: works as follows.

At time \mathcal{P}, choose random permutation of L.

At time $t > \mathcal{P}$ when voter $t \in R$ arrives, match to the unmatched neighbor that occurs earliest in the random permutation.