
Cornell University, Fall 2021 CS 6820: Algorithms
Lecture notes on NP-completeness Oct 2021

These lecture notes concern problems that are thought to be computationally hard. A
distinguishing feature of computational complexity theory is that most problems of interest
can be organized into a relatively small number of equivalence classes, called “complexity
classes”, under the relation of polynomial-time reducibility (to be defined below). The
existence of a polynomial-time for any problem in one of these classes would imply that all
the other problems in that same complexity class can be solved in polynomial time. A major
challenge in theoretical computer science is to prove that these complexity classes really are
distinct; the most famous special case of this challenge is the “P versus NP” problem.

1 Defining NP, co-NP, #P

Many important complexity classes can be defined in terms computing the value of an
exponentially large formula. Let � be a binary operation that is both commutative and
associative, taking values in some set Ω. For example, Ω could be the natural numbers and
� could be addition, or Ω could be the set of Boolean truth values {0, 1} (with 1 interpreted
as true and 0 interpreted as false) and � could be the Boolean or (∨) or and (∧)
operation.

Suppose that V (·, ·) is a polynomial-time algorithm that takes two inputs, x and y, and
produces a value in Ω. We will denote the number of bits needed to describe x and y by
|x| and |y|, respectively, and we will assume they are related by |y| = p(|x|), where p is a
function of at most polynomial growth. Then one can consider the problem of computing
the function

F (x) =
⊙

y∈{0,1}|p(x)|
V (x, y).

When one instantiates this definition for � ∈ {∨,∧,+} one obtains the classes NP, coNP,
and #P.

Definition 1. A function F : {0, 1}∗ → {0, 1} belongs to NP if and only if there exists a
polynomial-time algorithm V such that F (x) =

∨
y V (x, y).

A function F : {0, 1}∗ → {0, 1} belongs to coNP if and only if there exists a polynomial-
time algorithm V such that F (x) =

∧
y V (x, y).

A function F : {0, 1}∗ → {0, 1} belongs to #P if and only if there exists a polynomial-time
algorithm V such that F (x) =

∑
y V (x, y).

In the context of the class NP, the algorithm V is often called a “polynomial-time verifier”
for the problem F . The verifier’s two inputs, x and y, are interpreted as follows: x is an
input instance of the decision problem described by F , and y is a “candidate solution.” The
verifier outputs 1 (true) if y is a valid solution to x, and it outputs 0 (false) if y is not a
valid solution. The task of computing F (x) =

∨
y V (x, y) can then be interpreted as deciding

whether the problem specified by x has a solution.

1

For example, the graph 3-colorability problem is the following decision problem:
given a graph G = (V,E), is there a function h : V → {0, 1, 2} such that h(u) 6= h(v)
whenever G contains an edge with endpoints u, v. To interpret graph 3-colorability
as a problem in NP, first let x denote a binary string encoding the graph G, for example a
string of n2 bits that lists the entries of the adjacency matrix of G in row-major order. Then
let y denote a binary string encoding a potential coloring of G, for example by representing
each of the colors in {0, 1, 2} as an element of {0, 1}2 and then concatenating the encodings
of the colors of each of the n vertices of G into a string of 2n bits. A verifier V for graph
3-colorability works as follows: if runs through the adjacency matrix to find all the edges
(u, v). For each edge, it looks up the binary encodings of h(u) and h(v) in the string y and
tests that h(u), h(v) both belong to {0, 1, 2} and that h(u) 6= h(v). If y passes all of these
tests then V (x, y) = 1; otherwise V (x, y) = 0. Clearly the verifier can perform these tests in
polynomial time, and the verifier outputs 1 if and only if y is the binary encoding of a valid
3-coloring of G. Hence, the value of the function F (x) =

∨
y∈{0,1}2n V (x, y) is 1 if x is the

binary encoding of a 3-colorable graph, and 0 otherwise.

The class coNP is defined similarly to NP but using Boolean and rather than or. In
other words, when F belongs to coNP, computing F (x) for an input x is tantamount to
deciding whether the verifier always outputs 1 on input pair (x, y) regardless of the value
of y. An archetypical example of a coNP problem is the tautology problem: given a
quantifier-free Boolean logical formula on n variables, decide if the formula is a tautology.
In this case, the verifier V takes a binary string x that describes the Boolean formula, and a
binary string y encoding a potential truth assignment to the n variables, and V (x, y) outputs
the truth value of the formula represented by x, when one assigns the variables the truth
values represented by y.

The class #P consists of counting problems. An archetypical example is the problem
of counting the number of perfect matchings of a graph G. In this example, V could be
an algorithm that takes a string x representing the adjacency matrix of G, and a string y
representing the adjacency matrix of a subgraph H, and V could perform the following tests:

• y is a symmetric matrix: y[i, j] = y[j, i] for all i, j.

• y is the adjacency matrix of a subgraph of G: y[i, j] ≤ x[i, j] for all i, j.

• y is the adjacency matrix of a perfect matching:
∑

j y[i, j] = 1 for all i.

Matrices y that pass these tests are in one-to-one correspondence with perfect matchings in
G. Hence, computing

∑
y∈{0,1}n2 V (x, y) is tantamount to counting the number of perfect

matchings of G.

1.1 A remark about data types

Above, we have adopted the convention that the input to a problem must be a binary string,
x ∈ {0, 1}∗. Although any type of data can be encoded using a binary string, in practice we
want to talk about the complexity of problems whose inputs are graphs, logical formulas, and
the like. Insisting that the definition of computational problem must include a specification

2

of how to encode the input as a binary string tends to take one’s attention away from
the computational essence of the problem and refocus it on relatively meaningless low-level
details of the data encoding. (Are we presenting graphs using an adjacency matrix or an
adjacency list? When the input to a problem is a sequence of integers, how does the input
string indicate where the digits of one number end and the digits of the next one begin?)

Accordingly, it is convenient to generalize our notion of computational problems as fol-
lows. We assume the problem is defined by:

• a set of input instances, X , accompanied by a measure of input size size : X → N.

• a set of candidate solutions, Y , accompanied by a function that assigns to each x ∈X
a finite subset Y (x) ⊆ Y .

• a set of output values, Ω, with a commutative and associative binary operation �.

• a binary encoding function enc : X ∪ Y ∪ Ω → {0, 1}∗, whose restriction to each of
the sets X ,Y ,Ω is one-to-one. Furthermore there are polynomial functions p(n), q(n)
such that for each x ∈ X we have |enc(x)| ≤ p(size(x)) and for each y ∈ Y (x) we
have |enc(y)| ≤ q(size(x)).

A verifier V is a function that takes (the binary encodings of) x ∈ X and y ∈ Y (x), and
outputs (the binary encoding of) a value in Ω. The computational problem corresponding
to V is then: given x, compute F (x) =

⊙
y∈Y (x) V (x, y).

This formalism allows us to abstract away the binary encoding operation. For example,
we could simply say that the verifier for graph 3-colorability takes a graph G = (V,E) and
a function h : V → {0, 1, 2} and tests that the endpoints of each edge are assigned distinct
colors, or that the verifier for the problem of counting perfect matchings takes a graph
G = (V,E) and an edge set M ⊆ E and tests that every vertex belongs to exactly one
element of M .

2 Reductions and Completeness

Reductions constitute the most important tool for reasoning about relative computational
complexity of different problems.

Definition 2. If A : XA → Ω and B : XB → Ω are two computational problems, a Karp
reduction from A to B is a function R : XF →XG such that A(x) = B(R(x)) for all x ∈XA.
A polynomial-time Karp reduction is a Karp reduction such that there exists an algorithm
to compute R(x) running in time O(p(size(x))) for some polynomial function p.

Karp reductions constitute a particularly simple way of solving problem A using a sub-
routine that solves B. When thought of in this way, two important limitations of Karp
reductions deserve to be mentioned:

1. the subroutine that solves B can only be called once;

3

2. the subroutine’s output must be used as the solution to A.

We write A ≤P B if there is a polynomial-time Karp reduction from A to B. This is a
reflexive, transitive relation because the identity function is a reduction from A to A, and
because one can compose polynomial-time reductions from A to B and from B to C to
obtain a polynomial-time reduction from A to C. If A ≤P B and B ≤P A then we write
A ≡P B and say that A and B are computationally equivalent under polynomial-time Karp
reductions. Note that ≡P is an equivalence relation whose equivalence classes are partially
ordered by ≤P .

If C is a class of problems, a problem B is called C -hard (under polynomial-time Karp
reductions) if A ≤P B for all A ∈ C , and B is called C -complete if B ∈ C and B is C -hard.
In other words, a C -complete problem is a maximal element of C under the ordering induced
by the polynomial-time reducibility relation, ≤P .

A more general type of reduction called a polynomial time Turing reduction or Cook
reduction does away with these two limitations, allowing a polynomial number of calls to
the subroutine that solves B, and allowing any polynomial-time postprocessing procedure
to extract the solution to A. In a Turing reduction the calls to B can even be adaptive,
meaning that the input to one subroutine call may depend on the output of a previous one.
Since every Karp reduction is a Turing reduction, equivalence under polynomial-time Turing
reductions is a coarser equivalence relation than ≡P . This is, in fact, the main advantage
of Karp reductions: they allow us to make distinctions between classes of problems that are
equally hard to solve using polynomial-time algorithms, but differ in other important ways.
For example, NP-complete and coNP-complete problems are equivalent under polynomial-
time Turing reductions, but they are believed to be inequivalent under polynomial-time
Karp reductions. This reflects a genuine computational difference between an NP-complete
problem such as graph 3-colorability and a coNP-complete problem such as graph
non-3-colorability: it is easy to prove that a graph G is 3-colorable (just present the
3-coloring), but it seems hard in general to prove that a graph is not 3-colorable.

3 The Cook-Levin Theorem

In this section we present (without proof) a seminal theorem that constitutes the starting
point for identifying problems as NP-complete.

Definition 3. If x1, . . . , xn is a list of Boolean variables, a literal is any of the 2n terms
x1, x̄1, . . . , xn, x̄n formed by taking the variables and their negations.

A CNF clause (of width k) is any term formed by connecting k literals using the Boolean
or operation.

A CNF formula is a conjunction of CNF clauses. It is called a k-CNF if each of its clauses
has width at most k.

A truth assignment for variables x1, . . . , xn is a function y : {x1, x2, . . . , xn} → {0, 1}; it
extends uniquely to a function y : {x1, x̄1, . . . , xn, x̄n} → {0, 1} satisfying y(xi) 6= y(x̄i) for
each i. A truth assignment y satisfies clause C if at least one of the literals in C is mapped
to 1 by y; it satisfies CNF formula φ if it satisfies every clause of φ.

4

Theorem 1 (Cook-Levin). For every k ≥ 3 the following problem known as k-SAT is NP-
complete: given a k-CNF formula φ, decide whether there exists a truth assignment that
satisfies φ.

It is evident that k-SAT belongs to NP because a verifier V given a formula φ and
truth assignment y can easily check whether y satisfies φ. The non-trivial content of the
Cook-Levin Theorem is the assertion that every other problem in NP reduces to 3-SAT.

Armed with the Cook-Levin Theorem, it becomes quite easy to show that other problems
are NP-complete. This is due to the following observation.

Lemma 2. Suppose B is a problem in NP. If A is an NP-complete problem and A ≤P B
then B is NP-complete.

Proof. By assumption B belongs to NP. To show that B is NP-hard, consider any other
problem C in NP. Since A is NP-complete, we have C ≤P A. By assumption A ≤P B.
The proof of the lemma concludes by observing that C ≤P B because ≤P is a transitive
relation.

The lemma implies the following recipe for showing that a problem, B, is NP-complete.

1. Show that B belongs to NP. This is usually accomplished by describing a polynomial-
time verifier for B.

2. Choose another NP-complete problem, A, and present a polynomial-time Karp reduc-
tion from A to B.

In the next section we will elaborate on how the second step is usually accomplished.

4 Designing reductions between NP problems

At the end of the previous section we saw that the key to proving a problem B is NP-complete
is to identify another NP-complete problem A (such as 3-SAT) and a polynomial-time Karp
reduction R from A to B.

To understand how to construct and analyze a reduction R, it helps to recall the defini-
tions of NP and of Karp reductions. If VA and VB are the verifiers for A and B, respectively,
then we require that for all x ∈XA, A(x) = B(R(x)). Now recall that A(x) = 1 if and only
if there exists y ∈ Y (x) such that VA(x, y) = 1, and that B(R(x)) = 1 if and only if there
exists z ∈ Y (R(x)) such that VB(R(x), z) = 1.

Lemma 3. Suppose A and B are NP problems with verifiers VA, VB, respectively. Suppose
there exist three functions

R : XA →XB TAB : YA → YB TBA : YB → YA

5

the relations

VA(x, y) = 1⇐= TAB(y) ∈ Y (R(x)) and VB(R(x), TAB(y)) = 1

VB(R(x), z) = 1⇐= TBA(z) ∈ Y (x) and VA(x, TBA(z)) = 1

hold for all x ∈ XA, y ∈ Y (x), z ∈ Y (R(x)). If R is computable in polynomial time, then
A ≤P B.

Proof. We must show that A(x) = B(R(x)) for all x. Since A and B are {0, 1}-valued, this
is equivalent to showing that A(x) = 1 ⇔ B(R(x)) = 1. If A(x) = 1 it means that there
exists y ∈ Y (x) such that VA(x, y) = 1. Then, by assumption, z = TAB(y) ∈ Y (R(x)) and
VB(R(x), z) = 1, so B(R(x)) = 1. Conversely, if B(R(x)) = 1 then there exists z ∈ YB(R(x))
such that VB(R(x), z) = 1. Then, by assumption, y = TBA(z) ∈ Y (x) and VA(x, y) = 1 so
A(x) = 1.

Although proving A ≤P B only requires coming up with the function R, in practice to
prove the correctness of a reduction it is usually helpful to define the functions TAB and
TBA as well. Each of the three functions R, TAB, TBA occupies a distinct conceptual role in
analyzing the relationship between problems A and B.

• R “encodes” an instance of problem A using an instance of problem B. Often, the
output of the reduction is a structure consisting of disjoint substructures called “gad-
gets” that correspond to different portions of the input instance x ∈XA. For example,
when reducing 3-SAT to a graph problem, the output of the reduction may be a graph
made up of disjoint subgraphs corresponding to the variables and the clauses of the
given 3-CNF formula.

• TAB “encodes” a candidate solution for an instance of problem A as a candidate solution
for the corresponding instance of B. Most often, this is “co-designed” with R, meaning
that the creative thought process that leads to defining the function R simultaneously
leads to defining TAB. If the definition of R mainly consists of specifying “gadgets”,
the definition of TAB mainly consists of specifying an “intended usage” for each gadget.

• TBA “decodes” a candidate solution for R(x) to produce a solution for x. Most often,
this is the hardest step to get right. If one conceptualizes TAB as defining an “intended
usage” for the gadgets of the reduction, then the process of defining TBA typically
involves showing that there is no “unintended usage” for the gadgets. In more detail,
defining TBA typically involves showing that for any z ∈ Y (R(x)), either VB(R(x), z) =
0 — in which case TBA(z) can be defined arbitrarily — or else z must use each of the
gadgets in R(x) “as intended”, which makes it easy to use the information in z to
extract a solution y ∈ Y (x) such that VA(x, y) = 1. This will all become clearer below
when we present some examples.

4.1 3-SAT to Independent Set

An independent set in a graph G is a set of vertices such that every edge of G has at most
one endpoint in the set. In the independent set problem we are given a graph G and

6

a natural number k, and we are asked to decide whether G contains an independent set of
size k. This problem clearly belongs to NP: given G and S, a verifier can test that S has k
elements and that no edge of G has both of its endpoints in S.

In this section we will design and analyze a reduction from 3-SAT to independent
set. If φ is a 3-CNF formula with variables x1, . . . , xn and clauses C1, . . . , Cm, our goal is to
construct a graph G such that truth assignments satisfying φ correspond to large independent
sets in G. The first step is to figure out how the variables of φ will be represented in G.
Since a variable has exactly two potential truth values, it is logical to try encoding each
variable xi using a subgraph Ui ⊂ G that has exactly two maximum independent sets. The
easiest way to do this is by defining Ui to consist of a single edge with endpoints u0i , u

1
i .

The vertices of Ui will be disjoint from all the other gadgets our reduction creates. The
two maximum independent sets of Ui are {u0i } and {u1i }. The “intended use” of the gadget
when transforming a truth assignment to a large independent set S is that setting xi = 0
will correspond to including u0i in S and setting xi = 1 will correspond to including u1i in S.
Now we come to the issue of representing the clauses of φ in the graph G. Again, our aim
is to ensure that truth assignments which satisfy φ should transform into large independent
sets in G. Hence, it is logical to encode a clause Cj as a structure in G containing one or
more vertices that can be added to our intended independent set S, but only if at least one
of the corresponding variables is assigned a truth value that satisfies the clause. We will
accomplish this by representing a clause Cj of width w as a set of w vertices Vj that form a
clique in G. (This connectivity pattern ensures that each independent set contains at most
one element of Vj.) If Cj contains a literal xi then u0i will be connected to one of the vertices
in Vj, and if Cj contains a literal x̄i then u1i will be connected to one of the vertices in Vj.
Distinct literals in Cj are connected to distinct vertices in Vj.

In summary, the reduction R and transformation TAB transform a 3-CNF formula φ and
truth assignment y into a graph G, natural number k, and vertex set S defined as follows.

• Let x1, . . . , xn and C1, . . . , Cm be the variables and clauses of φ.

• The vertex set of G is partitioned into disjoint sets (Ui)
n
i=1 and (Vj)

m
j=1 such that

Ui = {u0i , u1i } and |Vj| is the width of clause Cj. Each of these n+m sets will be called
a “gadget”.

• The edge set of G contains two types of edges: every two vertices that belong to the
same gadget are joined by an intra-gadget edge, and every vertex in a clause gadget Vj
belongs to exactly one inter-gadget edge whose other endpoint is in a variable gadget
Ui.

• If literal xi appears in Cj, then u0i belongs to an inter-gadget edge whose other endpoint
is in Vj. If literal x̄i appears in Cj then u1i belongs to an inter-gadget edge whose other
endpoint is in Vj. Note that in an inter-gadget edge from Ui to Vj, the superscript of
the vertex from Ui corresponds to the truth value for xi which does not satisfy Cj.

• The desired independent set size, k, is defined to be equal to the number of gadgets,
n+m.

7

• If y is a truth assignment, then the vertex set S = TAB(y) is defined to contain u0i for
every i such that y(xi) = 0 and S contains u1i for every i such that y(xi) = 1. Finally,
for every clause Cj, if at least one literal of Cj is satisfied by y, we choose one such
literal (breaking ties arbitrarily if there is more than one literal to choose from) and
we include the corresponding vertex of Vj in S.

Note that the reduction runs in polynomial time: for each variable and clause of φ, it takes
constant time to create the corresponding vertices of G and their intra-gadget edges, and it
takes an additional O(m) time to create the inter-gadget edges of G.

Note also that, by construction, if y satisfies φ then S = TAB(y) contains exactly one
vertex from each gadget, and accordingly we have |S| = k = n + m. Furthermore, S is an
independent set in G: intra-gadget edges have at most one endpoint in S because S contains
only one vertex from each gadget, and any inter-gadget edge e = (u, v) with u ∈ Ui and
v ∈ Vj has at most one endpoint in S because if v ∈ S then the truth assignment y satisfies
the literal corresponding to v. However, if u = uai , then as noted above, the superscript a is
the truth value of xi that does not satisfy Cj, so uai does not belong to S.

To finish analyzing the reduction we need to design a reverse transformation TBA such
that if S is an independent set of n + m vertices in G = R(φ) then y = TBA(S) is a truth
assignment that satisfies φ. Since the vertex set of the graph R(φ) is partitioned into n+m
subsets (“gadgets”) and every two vertices belonging to the same gadget are joined by an
edge, we know that every independent set in G contains at most one vertex from each gadget,
and every independent set of size n+m contains exactly one vertex from each gadget. If S is
such an independent set, define y = TBA(S) to be the truth assignment that assigns to each
variable xi the truth value a such that uai ∈ S. We must show that y satisfies each clause of
φ. If Cj is a clause of φ then S contains an element v ∈ Vj. The corresponding literal in Cj

must be satisfied by y, since otherwise, S would contain both endpoints of the intra-gadget
edge originating at v.

4.1.1 3-SAT to Indepedent Set in Graphs of Maximum Degree 3

Consider the special case of the independent set problem in which every vertex has degree at
most 3, i.e. every vertex belongs to at most 3 edges. We would like to show that this special
case of the problem is still NP-complete. Clearly it belongs to NP, but we must modify the
reduction designed above to output a graph with maximum degree 3. The vertices in the
“clause gadgets” Vj already have degree 3, but the vertices in the “variable gadgets” Ui can
have high degree. In particular, a vertex corresponding to a literal that appears in c clauses
will have degree c+ 1.

To modify the reduction to output a graph with maximum degree 3, we must modify the
variable gadgets. Since we still want to use intra-gadget edges to join the variable gadgets to
the clause gadgets, and a variable gadget can belong to as many as m clauses, the variable
gadgets must be large enough to have m edges protruding from them without violating the
maximum-degree constraint. This will necessitate enlarging the variable gadgets to contain
a large number of vertices. Recall that the essential property of the variable gadgets Ui was
that they should have exactly two maximum independent sets. One way to accomplish this is

8

by making Ui into a cycle of length 2m comprising vertices ua,bi for (a, b) ∈ {0, 1}× [m]. The
edges of the cycle join u1,bi to u0,bi and u0,b+1

i , where the second superscript is interpreted mod
m, so u0,m+1

i denotes the same vertex as u0,1i . Now Ui has exactly two maximum independent
sets, both of size m. The intragadget edges now connect Vj with all vertices u0,ji such that
xi belongs to Cj and all vertices u1,ji such that x̄i belongs to Cj. Note that every vertex of G
now belongs to two intra-gadget edges and at most one inter-gadget edge, so the maximum
degree of G is indeed 3. The modified value of k (the desired size for the independent set)
in this reduction is nm + m. Since G = R(φ) can be partitioned into n variable gadgets
with maximum independent set size m, and m clause gadgets with maximum independent
set size 1, the only independent sets in G with size nm+m are those that contain m vertices
of each variable gadget and one vertex of each clause gadget. With this observation in hand,
it is easy to modify the proof of correctness of the previous reduction, to show that this new
reduction is also correct.

9

	Defining NP, co-NP, #P
	A remark about data types

	Reductions and Completeness
	The Cook-Levin Theorem
	Designing reductions between NP problems
	3-SAT to Independent Set
	3-SAT to Indepedent Set in Graphs of Maximum Degree 3

