
Cornell University, Fall 2020 CS 6820: Algorithms
Lecture notes: Submodular functions 2 Dec 2020

If Ω is a set and 2Ω denotes its power set, a function f : 2Ω → R is called submodular if
it satisfies

∀A,B ⊆ Ω f(A) + f(B) ≥ f(A ∪B) + f(A ∩B). (1)

More generally, if L is a lattice then f : L→ R is called submodular if

∀a, b ∈ L f(a) + f(b) ≥ f(a ∨ b) + f(a ∧ b). (2)

In these notes we shall limit ourselves to considering the special case in which L = 2Ω for a
finite set Ω.

When Ω is finite, the following equivalent definition of submodularity lends insight into
its meaning. A function f : 2Ω → R is submodular if and only if it satisfies the following
“diminishing marginal returns” property:

∀S ⊆ T ⊂ Ω, i ∈ Ω \ T f(S ∪ {i})− f(S) ≥ f(T ∪ {i})− f(T ). (3)

This relation is easily seen to follow from property (1) by substituting A = S ∪ {i}, B = T .
Conversely, property (3) implies property (1) by rewriting the latter property as

∀A,B ⊆ Ω f(A)− f(A ∩B) ≥ f(A ∪B)− f(B)

and deriving that inequality from (3) by induction on the cardinality of A \B.

Submodular functions are pervasive in combinatorial optimization, and they arise quite
often in economic theory (where they may represent a consumer’s value for receiving a bundle
of goods) and machine learning (where they sometimes arise as the log-probability function
in certain binary labeling problems, and they can also be used to model summarization and
feature selection tasks). These notes cover some basic structural and algorithmic facts about
submodular functions.

1 Examples

In this section we collect some examples of submodular functions, to illustrate the many
contexts in which they arise.

Example 1 (Constant functions). A function that satisfies f(A) = f(∅) for all A ⊆ Ω is
trivially submodular.

Example 2 (Additive functions). The simplest non-trivial example of a submodular function
is an additive set function, i.e. one which satisfies

f(A ∪B) = f(A) + f(B)

for every pair of disjoint sets A,B ⊆ Ω. Every such function is a “weighted cardinality
function”, i.e. there is a function w : Ω → R — given by w(i) = f({i}) — such that
f(A) =

∑
i∈Aw(i).

1



Example 3 (Modular functions). A function f : 2Ω → R is modular if it satisfies

f(A) + f(B) = f(A ∪B) + f(A ∩B)

for all A,B ⊆ Ω. Modular functions are obviously submodular. It is not difficult to check
that a function is modular if and only if it is the sum of a constant function and an additive
function.

Example 4 (Concave functions of cardinality). If h : N→ R is a concave function, meaning
that h(k + 1)− h(k) is a non-increasing function of k ∈ N, then the function f(A) = h(|A|)
is submodular, because it satisfies (3).

Example 5 (Coverage functions). Suppose we are given a collection of finite sets {Si : i ∈
Ω}. For A ⊆ Ω let

SA =
⋃
i∈A

Si, f(A) = |SA|

where | · | denotes the cardinality of a set. In other words, f(A) is the number of elements
covered by the sets indexed by A. This function is submodular because for all A ⊆ B and
i 6∈ B, f(A∪{i})−f(A) = |Si \SA| while f(B∪{i})−f(B) = |Si \SB|. The latter quantity
cannot be greater than the former, because SB ⊇ SA.

Example 6 (Weighted coverage functions). The previous example generalizes to the case
in which we have a measure space (X,µ), a collection of measurable subsets {Si : i ∈ Ω},
and we define f(A) = µ(SA).

The weighted coverage functions can be characterized as the set functions that satisfy
the following identities for every pair of disjoint sets R, S with S non-empty:

f(R) ≥ 0 (4)∑
T⊆S

(−1)|T |f(R ∪ T ) ≤ 0 (5)

Submodularity of f is equivalent to the weaker condition that (5) holds for all pairs of disjoint
sets R, S such that |S| = 2.

Example 7 (Directed cut functions). If G = (V,E) is a directed graph and A ⊆ V , let f(A)
denote the number of edges (u, v) ∈ E such that u ∈ A and v 6∈ A. The easiest way to see
that this is a submodular function is to observe that

f(A) = g(A) + h(V \ A)− |E| (6)

where g(A) is the number of edges (u, v) such that u ∈ A, and h(B) is the number of
edges (u, v) such that u ∈ B or v ∈ B. Since g is an additive function and h is a coverage
function, equation (6) expresses f as a sum of an additive function, a submodular function,
and a constant function, hence f is submodular. (Here, we have applied the principle that
if h : 2Ω → R is a submodular function, then the function A 7→ h(Ω \ A) is submodular.)

The foregoing arguments apply also to the case in which edges of G have non-negative
weights and f(A) is the combined weight of all edges from A to V \A. In that case g is still
additive and h is a weighted coverage function, so f is still submodular.

2



Example 8 (Undirected hypergraph cut functions). Let H = (V,E,w) be a finite edge-
weighted hypergraph, meaning that V is a finite set, E is a collection of subsets of V (called
“hyperedges”), and w : E → R+ assigns a non-negative real weight to each set in E. For a
set A let δ(A) denote the set of hyperedges that have at least one vertex in A and at least
one vertex in V \ A. The function f : 2V → R defined by

f(A) =
∑
e∈δ(A)

w(e)

is submodular. In fact,
f(A) = h(A) + h(V \ A)− |E|

where h(B) denotes the sum of the weights of all hyperedges that intersect B, which is a
coverage function.

Example 9 (Budgeted additive functions). Given a non-negative valued weight function
w : Ω→ R+ and a parameter B ≥ 0, the function

f(A) = min

{∑
i∈A

w(i), B

}
is submodular.

Example 10 (Log-determinant functions). If P is a positive definite matrix and Ω denotes
the index set of its rows and columns, then for any A ⊆ Ω we can let PA denote the square
submatrix of P consisting of the entries in the rows and columns indexed by A. The function

f(A) =

{
log(detPA) if A 6= ∅
1 if A = ∅

is submodular. In fact, since P is positive definite there exists a set of vectors {xi : i ∈ Ω}
such that Pij = xi · xj for all i, j ∈ Ω. The |A|-dimensional volume of the parallelepiped
spanned by the vectors {xi : i ∈ A} is (detPA)1/2. Using the formula that the volume of a
parallelepiped is the area of the base times the height, this implies that

(detPA∪{i})
1/2 = (detPA)1/2 × h1/2

A,i (7)

where hA,i is the distance from xi to the linear subspace ΛA spanned by {xj : j ∈ A}.
Taking the logarithm of both sides of (7) we find that

f(A ∪ {i})− f(A) = 1
2

log(hA,i). (8)

The submodularity of f now follows from the observation that if A ⊆ B then ΛA ⊆ ΛB so
the distance of xi from ΛA is greater than or equal to its distance from ΛB.

Example 11 (Entropy functions). For a random variable Y taking values in a set Θ, the
Shannon entropy of Y is defined as

H(Y ) = −
∑
θ∈Θ

Pr(Y = θ) log Pr(Y = θ).

3



Let X be a finite probability space (i.e., a probability space with finitely many sample points)
and let {Yi : i ∈ Ω} be a set of random variables on X taking values in some set Σ. For any
subset A ⊆ Ω, let YA denote the ΣA-valued random variable defined by evaluating the tuple
(Yi)i∈A. The function

f(A) = H(YA)

is submodular. The proof, which is an application of Jensen’s inequalilty for convex functions,
can be found in information theory textbooks, for example the textbook by Cover and
Thomas.

2 The Lovász Extension

A submodular function f can equivalently be viewed as a function f : {0, 1}Ω → R according
to the rule that for every x ∈ {0, 1}Ω,

f(x) = f({i : xi = 1}).

Our goal in this section is to define a convex function f− on the domain [0, 1]Ω that satisfies
f−(x) = f(x) for every x ∈ {0, 1}Ω. This will allow us to design an algorithm to minimize
submodular functions in polynomial time, by reducing the problem to a convex minimization
problem.

In fact, for any function f : {0, 1}Ω → R, whether or not f is submodular, we may define
its convex closure to be the function f− : [0, 1]Ω → R specified by

f−(x) = min {E[f(y)] | E[y] = x} , (9)

where the minimum is over all probability distributions on vectors y ∈ {0, 1}Ω that satisfy
E[y] = x.

The following easy observations motivate the importance of the convex closure, from an
optimization standpoint.

Lemma 1. For every f : {0, 1}Ω → R, the convex closure f− is a convex function on [0, 1]Ω

that satisfies

∀y ∈ {0, 1}Ω f−(y) = f(y) (10)

min{f−(x) | x ∈ [0, 1]Ω} = min{f(y) | y ∈ {0, 1}Ω} (11)

max{f−(x) | x ∈ [0, 1]Ω} = max{f(y) | y ∈ {0, 1}Ω}. (12)

Proof. The function f− is convex because if x,x′ are any two vectors in [0, 1]Ω, and p, p′ are
two distributions on {0, 1}Ω such that

Ey∼p[y] = x, Ey∼p[f(y)] = f−(x)

Ey∼p′ [y] = x′, Ey∼p′ [f(y)] = f−(x′)

then for any λ ∈ [0, 1] we may define a distribution p′′ on {0, 1}Ω by p′′(y) = λp(y) + (1 −
λ)p′(y). This satisfies Ey∼p′′ [y] = λx + (1− λ)x′, so

f−(λx + (1− λ)x′) ≤ Ey∼p′′ [f(y)] = λf−(x) + (1− λ)f−(x′)

4



which confirms that f− is convex.

Each y ∈ {0, 1}Ω is an extreme point of the polyhedron [0, 1]Ω, meaning that the only
way to express y as a convex combination

∑
z∈{0,1}Ω λzz is the trivial convex combination in

which the coefficient λy equals 1 and all other coefficients are 0. This establishes identity (10).
The other two equations are justified by combining (10) with the observation that a weighted
average of real numbers in the interval [a, b] always belongs to [a, b]. In this case, setting a
equal to the right side of (11) and b to the right side of (12), we see that for every x ∈ [0, 1]Ω

the value f−(x) is a weighted average of numbers in the interval [a, b], so f−(x) itself must
belong to [a, b].

Lemma 1 suggests a method for efficiently computing the minimum of an integer-valued
function f on {0, 1}Ω, by reducing to minimizing the convex functon f−. In order for this be
a computationally efficient reduction, we must be able to evaluate f−(x) and its subgradient
∇x(f−) at any x ∈ [0, 1]Ω. When f is submodular, there is a very efficient way to evaluate
f− and its subgradient.

Lemma 2. For any x ∈ [0, 1]Ω and t ∈ [0, 1] let

Sx(t) = {j ∈ Ω : xj > t}.

If f is submodular then its concave closure satisfies

∀x ∈ [0, 1]Ω f−(x) =

∫ 1

0

f(Sx(t)) dt. (13)

Furthermore the subgradient ∇xf
− has coordinates given by the formula

(∇xf
−)i = f(Sx(xi) ∪ {i})− f(Sx(xi)). (14)

Proof. Consider any x ∈ [0, 1]Ω, and suppose p is a distribution on vectors y ∈ {0, 1}Ω such
that Ey∼p[y] = x. The proof will be based upon the observation that among the distributions
satisfying this constraint that minimize Ey∼p[f(y)], there is one that is supported on a
“nested” set of vectors. Here, we refer to a subset of {0, 1}Ω as “nested” if the vectors in
this subset are totally ordered by the � relation, or equivalently if their corresponding sets
are totally ordered by the subset relation.

The reason why the set of minimizing distributions should contain one with nested sup-
port is that f is submodular. Submodularity of f is relevant because the relations

y1 + y2 = (y1 ∨ y2) + (y1 ∧ y2)

f(y1) + f(y2) ≥ f(y1 ∨ y2) + f(y1 ∧ y2)

imply that for any two vectors y1,y2 in the support of p, if δ = min{p(y1), p(y2)} and q is
the distribution

q(y) =


p(y)− δ if y ∈ {y1, y2}
p(y) + δ if y ∈ {y1 ∨ y2, y1 ∧ 22}
p(y) otherwise.

5



then Ey∼q[y] = x and Ey∼q[f(y)] ≤ Ey∼p[f(y)]. Furthermore, defining Q to be the quadratic
function Q(y) = (

∑
i∈Ω yi)

2, if y1 6� y2 and y2 6� y1 then we have

Q(y1) +Q(y2) < Q(y1 ∨ y2) +Q(y1 ∧ y2)

so
Ey∼p[Q(y)] < Ey∼q[Q(y)]

Consequently, among all distributions p that satisfy E[y] = x and that minimize E[f(y)]
subject to this constaint, if we choose one that maximizes E[Q(y)] then it must be the case
that the support of p is nested.

There is only one distribution with nested support whose expectation is x. It is the
distribution obtained by sampling t ∈ [0, 1] uniformly at random and selecting the vector

yi =

{
1 if xi > t

0 otherwise.

The expectation of f(y) under this distribution is equal to the right side of (13). The
formula (14) for the subgradient of f is then obtained by reasoning about how the right side
of (13) varies as we vary x by a small amount.

3 Packing disjoint arborescences

As one algorithmic application of submodular functions, we present an algorithm for the
following network design problem. We are given a directed graph G = (V,E) with a dis-
tinguished node r. A spanning arborescence rooted at r is defined to be an edge set B such
that

1. every vertex v 6= r is the head of exactly one edge in B;

2. r is not the head of any edge in B;

3. for every vertex v 6= r, B contains a path from r to v.

In other words, an arborescence is like a directed version of a spanning tree: its underlying
set of undirected edges forms a spanning tree of G, and all of its edges are oriented so that
they point away from r.

When does a directed graph G contain k edge-disjoint spanning arborescences rooted at
r? An obvious necessary condition is that for every vertex v 6= r, there are k edge-disjoint
paths from r to v. Surprisingly, Edmonds proved that this condition is both necessary
and sufficient. Furthermore, there is a polynomial-time algorithm to compute a set of k
edge-disjoint spanning arborescences rooted at r, when such a set exists.

Theorem 3 (Edmonds’ Branching Theorem). Suppose G is a directed graph containing at
least k edge-disjoint paths from r to v, for every vertex v 6= r. Then G contains k edge-
disjoint spanning arborescences rooted at r.

6



Proof. The following proof is due to László Lovász.

For a vertex set S, let δG(S) denote the set of edges from S to V \ S, and let cG(S) be
the cut function

cG(S) = |δG(S)|.
By Menger’s Theorem, the condition that G contains at least k edge-disjoint paths from r
to v, for every vertex v 6= r, is equivalent to

min{cG(S) : {r} ⊆ S ( V } ≥ k. (15)

Let C denote the collection of all vertex sets S such that {r} ⊆ S ( V . Assume without
loss of generality that the left and right sides of (15) are equal, i.e. k is exactly the minimum
value of cG(S), over all S ( V that contain r. To prove the theorem, we will show how to
construct a spanning arborescence A, rooted at r, such that cG\A(S) ≥ k − 1 for all S ∈ C .
If we present a polynomial time algorithm to construct such an A, it follows that we can
iterate the algorithm k times to find k edge-disjoint spanning arborescences rooted at A.

The algorithm to construct A will be a greedy algorithm that initializes A = ∅ and grows
A one edge at a time. Let

V (A) = {r} ∪ {head(e) | e ∈ A}.

While V (A) 6= V , we will find one edge from V (A) to its complement that can be added to
the set A while preserving the constraint that cG\A(S) ≥ k− 1 for all S ∈ C . Assume (as an
inductive hypothesis) that our current set A satisfies this constraint. If V (A) = V then A
is a spanning arborescence rooted at r and we are done. Otherwise, there must be an edge
e = (u, v) from V (A) to its complement. If we enlarge A to A∪{e} and V (A) to V (A)∪{v}
what could go wrong? There could be a vertex set S ∈ C such that cG\(A∪{e})(S) < k − 1.
However, this can only happen if u ∈ S, v 6∈ S, and cG\A(S) = k − 1. Note that in this case,
v 6∈ S∪V (A), hence S∪V (A) 6= V . Call a vertex set S critical with respect to A if it satisfies

1. S ∈ C

2. cG\A(S) = k − 1

3. S ∪ V (A) 6= V .

We have seen that if there are no critical sets with respect to A, then we can extend A by
inserting an arbitrary edge from V (A) to its complement. Otherwise let X be a maximal
critical set. We have cG\A(X ∪ V (A)) = cG(X ∪ V (A)) = k whereas cG\A(X) = k − 1, so
there is at least one edge e = (u, v) with u ∈ V (A)\X and v 6∈ V (A)∪X. Let A′ = A∪{e}.
If cG\A

′
(Y ) < k − 1 for some Y ∈ C then Y must be a critical set with u ∈ Y, v 6∈ Y . This

implies that Y ∪X ∪ V (A) 6= V since v 6∈ Y ∪X ∪ V (A). Furthermore the inequalities

2(k − 1) = cG\A(Y ) + cG\A(X) ≥ cG\A(Y ∪X) + cG\A(Y ∩X) ≥ 2(k − 1)

imply that cG\A(Y ∪X) = cG\A(Y ∩X) = k − 1. Hence Y ∪X is a critical set and a strict
superset of X, contradicting the maximality of X and hence confirming that cG\A

′
(Y ) ≥ k−1

for all Y ∈ C .

7



4 Cardinality constrained monotone submodular func-

tion maximization

Suppose f : 2Ω → R is a submodular function that is non-negative and monotone, meaning
that f(A) ≥ f(B) ≥ 0 for all A ⊇ B. In this section we consider the problem of maximizing
the value f(A) over all sets A of some specified cardinality, k. When f is a coverage function
defined by a collection of finite sets {Si : i ∈ Ω} then the set cover problem asks, for a given k,
whether there exists a set A ⊆ Ω such that f(A) = |

⋃
i∈Ω Si|. Since set cover is NP-complete,

we do not expect a computationally efficient procedure for answering this question. Instead,
this section presents and analyzes a natural greedy algorithm for approximately maximizing
f(A) over sets A of cardinality k.

The greedy algorithm works as follows: if initializes A0 = ∅ and for ` = 1, 2, . . . , k it
selects A` to be the set that maximizes f(A) subject to the constraint |A \ A`−1| = 1. In
other words, it iteratively adds elements into the set A one by one, each time choosing the
element that leads to the greatest marginal increase in the value of f .

To analyze the greedy algorithm let A∗ be a set of cardinality k that maximizes f(A∗),
and define ∆` for ` = 0, 1, . . . , k by

∆` = f(A∗)− f(A`).

We claim, as an inductive hypothesis, that ∆` ≤ (1− 1
k
)`f(A∗) for ` = 0, 1, . . . , k. We have

already shown the Since A0 = ∅ and f(∅) ≥ 0, we have ∆0 ≤ f(A∗), which is the base case
of the induction. For the induction step, let us number the elements of A∗ as {a1, a2, . . . , ak}
and for j = 0, 1, . . . , k define B`,j = A` ∪ {ai : i ≤ j. Since A∗ ⊆ A` ∪ A∗ = B`,k we have

f(A∗) ≤ f(B`,k) = f(A`) +
k∑
j=1

[f(B`,j)− f(B`,j−1)]

∆` =
k∑
j=1

[f(B`,j)− f(B`,j−1)]

≤
k∑
j=1

[f(A` ∪ {aj})− f(A`)]

1

k
∆` ≤ max

1≤j≤k
{f(A` ∪ {aj})− f(A`)

= f(A`+1)− f(A`)

∆`+1 = f(A∗)− f(A`+1) = ∆` − [f(A`+1)− f(A`)]

≤
(
1− 1

k

)
∆`

which completes the induction.

Observing that (1− 1
k
)k <

(
e−1/k

)k
< 1

e
, we have proven the following.

Theorem 4 (Nemhauser-Wolsey-Fisher). The greedy algorithm for monotone non-negative
submodular function maximization over sets of cardinality k outputs a solution whose value
is at least 1− (1− 1

k
)k > (1− 1

e
) times that of the optimum solution.

8



As a corollary, we have the following theorem about the greedy set cover algorithm, which
attempts to find a set cover of minimum cardinality by repeatedly choosing the set which
covers the greatest number of remaining elements.

Corollary 5. For a set cover instance specified by sets S1, . . . , Sm whose union has cardinality
n, the greedy algorithm outputs a set cover whose size is at most dln(n)e times greater than
the minimum set cover.

Proof. Suppose the minimum set cover has cardinality k. After the first k iterations of the
greedy set cover algorithm, the number of remaining uncovered elements is at most n/e, by
Theorem 4. After the next k iterations, the number of remaning uncovered elements is at
most n/e2, by another application of Theorem 4. More generally, after k · ` iterations of
the greedy set cover, the number of remaining uncovered elements is at most n/e`. When
` = dln(n)e this number is less than 1, so the greedy set cover algorithm must terminate
after choosing no more than k · dln(n)e sets.

9


	Examples
	The Lovász Extension
	Packing disjoint arborescences
	Cardinality constrained monotone submodular function maximization

