
Cornell University, Fall 2020 CS 6820: Algorithms
Lecture notes: Matchings 2 – 30 Sep 2020

These notes analyze algorithms for optimization problems involving matchings in graphs.
Matching algorithms are not only useful in their own right (e.g., for matching clients to servers
in a network, or buyers to sellers in a market) but also furnish a concrete starting point for
learning many of the recurring themes in the theory of graph algorithms and algorithms in
general. Examples of such themes are augmenting paths, linear programming relaxations,
and primal-dual algorithm design.

1 Bipartite maximum matching

In this section we introduce the bipartite maximum matching problem, present a näıve
algorithm with O(mn) running time, and then present and analyze an algorithm due to
Hopcroft and Karp that improves the running time to O(m

√
n).

1.1 Definitions

Definition 1. A bipartite graph is a graph whose vertex set is partitioned into two disjoint
sets L,R such that each edge has one endpoint in L and the other endpoint in R. When we
write a bipartite graph G as an ordered triple G = (L,R,E), it means that L and R are the
two vertex sets (called the left set and right set, respectively) and E is the edge set.

Definition 2. A matching in an undirected graph is a set of edges such that no vertex
belongs to more than element of the set.

The bipartite maximum matching problem is the problem of computing a matching of
maximum cardinality in a bipartite graph.

We will assume that the input to the bipartite maximum matching problem, G =
(L,R,E), is given in its adjacency list representation, and that the bipartition of G—that
is, the partition of the vertex set into L and R—is given as part of the input to the problem.

Exercise 1. Prove that if the bipartition is not given as part of the input, it can be con-
structed from the adjacency list representation of G in linear time.

(Here and elsewhere in the lecture notes for CS 6820, we will present exercises that may
improve your understanding. You are encouraged to attempt to solve these exercises, but
they are not homework problems and we will make no effort to check if you have solved
them, much less grade your solutions.)

1.2 Alternating paths and cycles; augmenting paths

The following sequence of definitions builds up to the notion of an augmenting path, which
plays a central role in the design of algorithms for the bipartite maximum matching problem.

1



Definition 3. If G is a graph and M is a matching in G, a vertex is called matched if it
belongs to one of the edges in M , and free otherwise.

An alternating component with respect to M (also called an M-alternating component)
is an edge set that forms a connected subgraph of G of maximum degree 2 (i.e., a path or
cycle), in which every degree-2 vertex belongs to exactly one edge of M . An augmenting path
with respect to M is an M -alternating component which is a path both of whose endpoints
are free vertices.

In the following lemma, and throughout these notes, we use the notation A⊕B to denote
the symmetric difference of two sets A and B, i.e. the set of all elements that belong to one
of the sets but not the other.

Lemma 1. If M is a matching and P is an augmenting path with respect to M , then M ⊕P
is a matching containing one more edge than M .

Proof. P has an odd number of edges, and its edges alternate between belonging to M and
its complement, starting and ending with the latter. Therefore, M ⊕ P has one more edge
than M . To see that it is a matching, note that vertices in the complement of P have the
same set of neighbors in M as in M ⊕ P , and vertices in P have exactly one neighbor in
M ⊕ P .

Lemma 2. A matching M in a graph G is a maximum cardinality matching if and only if
it has no augmenting path.

Proof. We have seen in Lemma 1 that if M has an augmenting path, then it does not have
maximum cardinality, so we need only prove the converse. Suppose that M∗ is a matching
of maximum cardinality and that |M | < |M∗|. The edge set M ⊕M∗ has maximum degree
2, and each vertex of degree 2 in M ⊕M∗ belongs to exactly one edge of M . Therefore
each connected component of M ⊕M∗ is an M -alternating component. At least one such
component must contain more edges of M∗ than of M . It cannot be an alternating cycle
or an even-length alternating path; these have an equal number of edges of M∗ and M . It
also cannot be an odd-length alternating path that starts and ends in M . Therefore it must
be an odd-length alternating path that starts and ends in M∗. Since both endpoints of this
path are free with respect to M , it is an M -augmenting path as desired.

1.3 Bipartite maximum matching: Näıve algorithm

The foregoing discussion suggests the following general scheme for designing a bipartite
maximum matching algorithm.

Algorithm 1 Näıve iterative scheme for computing a maximum matching

1: Initialize M = ∅.
2: repeat
3: Find an augmenting path P with respect to M .
4: M ←M ⊕ P
5: until there is no augmenting with respect to M .

2



By Lemma 1, the invariant that M is a matching is preserved at the end of each loop
iteration. Furthermore, each loop iteration increases the cardinality of M by 1, and the
cardinality cannot exceed n/2, where n is the number of vertices of G. Therefore, the
algorithm terminates after at most n/2 iterations. When it terminates, M is guaranteed to
be a maximum matching by Lemma 2.

The algorithm is not yet fully specified because we have not indicated the procedure for
finding an augmenting path with respect to M . When G is a bipartite graph, there is a
simple linear-time procedure that we now describe.

Definition 4. If G = (L,R,E) is a bipartite graph and M is a matching, the graph GM is
the directed graph formed from G by orienting each edge from L to R if it does not belong
to M , and from R to L otherwise.

Lemma 3. Suppose M is a matching in a bipartite graph G, and let F denote the set of
free vertices. M-augmenting paths are in one-to-one correspondence with directed paths from
L ∩ F to R ∩ F in GM .

Proof. If P is a directed path from L ∩ F to R ∩ F in GM then P starts and ends at free
vertices, and its edges alternate between those that are directed from L to R (which are in
the complement of M) and those that are directed from R to L (which are in M), so the
undirected edge set corresponding to P is an augmenting path.

Conversely, if P is an augmenting path, then each vertex in the interior of P belongs to
exactly one edge of M , so when we orient the edges of P as in GM each vertex in the interior
of P has exactly one incoming and one outgoing edge, i.e. P becomes a directed path. This
path has an odd number of edges so it has one endpoint in L and the other endpoint in
R. Both of these endpoints belong to F , by the definition of augmenting paths. Thus, the
directed edge set corresponding to P is a path in GM from L ∩ F to R ∩ F .

Lemma 3 implies that in each loop iteration of Algorithm 1, the step that requires finding
an augmenting path (if one exists) can be implemented by building the auxiliary graph GM

and running a graph search algorithm such as BFS or DFS to search for a path from L ∩ F
to R ∩ F . Building GM takes O(m+ n) time, where m is the number of edges in G, as does
searching GM using BFS or DFS. For convenience, assume m ≥ n/2; otherwise G contains
isolated vertices which may be eliminated in a preprocessing step requiring only O(n) time.
Then Algorithm 1 runs for at most n/2 iterations, each requiring O(m) time, so its running
time is O(mn).

Remark 1. When G is not bipartite, our analysis of Algorithm 1 still proves that it finds a
maximum matching after at most n/2 iterations. However, the task of finding an augmenting
path, if one exists, is much more subtle. The first polynomial-time algorithm for finding an
augmenting path was discovered by Jack Edmonds in a 1965 paper entitled “Paths, Trees,
and Flowers” that is one of the most influential papers in the history of combinatorial
optimization. Edmonds’ algorithm finds an augmenting path in O(mn) time, leading to a
running time of O(mn2) for finding a maximum matching in a non-bipartite graph. Faster
algorithms have subsequently been discovered.

3



1.4 The Hopcroft-Karp algorithm

One potentially wasteful aspeect of the näıve algorithm for bipartite maximum matching is
that it chooses one augmenting path in each iteration, even if it finds many augmenting paths
in the process of searching the auxiliary graph GM . The Hopcroft-Karp algorithm improves
the running time of the näıve algorithm by correcting this wasteful aspect; in each iteration
it attempts to find many disjoint augmenting paths, and it uses all of them to increase the
size of M .

The following definition specifies the type of structure that the algorithm searches for in
each iteration.

Definition 5. If G is a graph and M is a maximum matching, a blocking set of augmenting
paths with respect to M is a set {P1, . . . , Pk} of augmenting paths such that:

1. the paths P1, . . . , Pk are vertex disjoint;
2. they all have the same length, `;
3. ` is the minimum length of an M -augmenting path;
4. every augmenting path of length ` has at least one vertex in common with P1∪· · ·∪Pk.

In other words, a blocking set of augmenting paths is a (setwise) maximal collection of
vertex-disjoint minimum-length augmenting paths.

The following lemma generalizes Lemma 1 and its proof is a direct generalization of the
proof of that lemma.

Lemma 4. If M is a matching and {P1, . . . , Pk} is any set of vertex-disjoint M-augmenting
paths then M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pk is a matching of cardinality |M |+ k.

Generalizing Lemma 2 we have the following.

Lemma 5. Suppose G is a graph, M is a matching in G, and M∗ is a maximum matching;
let k = |M∗| − |M |. The edge set M ⊕M∗ contains at least k vertex-disjoint M-augmenting
paths. Consequently, G has at least one M-augmenting path of length less than n/k, where
n denotes the number of vertices of G.

Proof. The edge set M⊕M∗ has maximum degree 2, and each vertex of degree 2 in M⊕M∗

belongs to exactly one edge of M . Therefore each connected component of M ⊕M∗ is an
M -alternating component. Each M -alternating component which is not an augmenting path
has at least as many edges in M as in M∗. Each M -augmenting path has exactly one fewer
edge in M as in M∗. Therefore, at least k of the connected components of M ⊕M∗ must
be M -augmenting paths, and they are all vertex-disjoint. To prove the final sentence of the
lemma, note that G has only n vertices, so it cannot have k disjoint subgraphs each with
more than n/k vertices.

These lemmas suggest the following method for finding a maximum matching in a graph,
which constitutes the outer loop of the Hopcroft-Karp algorithm.

4



Algorithm 2 Hopcroft-Karp algorithm, outer loop

1: M = ∅
2: repeat
3: Let {P1, . . . , Pk} be a blocking set of augmenting paths with respect to M .
4: M ←M ⊕ P1 ⊕ P2 ⊕ · · · ⊕ Pk
5: until there is no augmenting path with respect to M

The key to the improved running-time guarantee is the following pair of lemmas which
culminate in an improved bound on the number of outer-loop iterations.

Lemma 6. The minimum length of an M-augmenting path strictly increases after each
iteration of the Hopcroft-Karp outer loop in which a non-empty blocking set of augmenting
paths is found.

Proof. We will use the following notation.

M = matching at the start of one loop iteration

P1, . . . , Pk = blocking set of augmenting paths found

Q = P1 ∪ · · · ∪ Pk
R = E \Q
M ′ = M ⊕Q = matching at the end of the iteration

F = {vertices that are free with respect to M}
F ′ = {vertices that are free with respect to M ′}

d(v) = length of shortest path in GM from L ∩ F to v

(If no such path exists, d(v) =∞.)

If (x, y) is any edge of GM then d(y) ≤ d(x)+1. Edges of GM that satisfy d(y) = d(x)+1
will be called advancing edges, and all other edges will be called retreating edges. Note that
a shortest path in GM from L ∩ F to any vertex v must be formed entirely from advancing
edges. In particular, Q is contained in the set of advancing edges.

In the edge set of GM ′ , the orientation of every edge in Q is reversed and the orientation
of every edge in R is preserved. Therefore, GM ′ has three types of directed edges (x, y):

1. reversed edges of Q, which satisfy d(y) = d(x)− 1;
2. advancing edges of R, which satisfy d(y) = d(x) + 1;
3. retreating edges of R, with satisfy d(y) ≤ d(x).

Note that in all three cases, the inequality d(y) ≤ d(x) + 1 is satisfied.

Now let ` denote the minimum length of an augmenting path with respect to M , i.e.
` = min{d(v) | v ∈ R ∩ F}. Let P be any path in GM ′ from L ∩ F ′ to R ∩ F ′. The
lemma asserts that P has at least ` edges. The endpoints of P are free in M ′, hence also
in M . As w ranges over the vertices of P , the value d(w) increases from 0 to at least `,
and each edge of P increases the value of d(w) by at most 1. Therefore P has at least `
edges, and the only way that it can have ` edges is if d(y) = d(x) + 1 for each edge (x, y)

5



of P . We have seen that this implies that P is contained in the set of advancing edges of
R, and in particular P is edge-disjoint from Q. It cannot be vertex-disjoint from Q because
then {P1, . . . , Pk, P} would be a set of k+ 1 vertex-disjoint minimum-length M -augmenting
paths, violating our assumption that {P1, . . . , Pk} is a blocking set. Therefore P has at least
one vertex in common with P1, . . . , Pk, i.e. P ∩ Q 6= ∅. The endpoints of P cannot belong
to Q, because they are free in M ′ whereas every vertex in Q is matched in M ′. Let w be a
vertex in the interior of P which belongs to Q. The edge of M ′ containing w belongs to P ,
but it also belongs to Q. This violates our earlier conclusion that P is edge-disjoint from Q,
yielding the desired contradiction.

Lemma 7. The Hopcroft-Karp algorithm terminates after fewer than 2
√
n iterations of its

outer loop.

Proof. After the first
√
n iterations of the outer loop are complete, the minimum length of

an M -augmenting path is greater than
√
n. This implies, by Lemma 5, that |M∗| − |M | <√

n, where M∗ denotes a maximum cardinality matching. Each remaining iteration strictly
increases |M |, hence there are fewer than

√
n iterations remaining.

The inner loop of the Hopcroft-Karp algorithm must compute a blocking set of augment-
ing paths with respect to M . We now describe how to do this in linear time.

Recalling the distance labels d(v) defined in the proof of Lemma 6; d(v) is the length of
the shortest alternating path from a free vertex in L to v; if no such path exists d(v) =∞.
Recall also that an advancing edge in GM is an edge (x, y) such that d(y) = d(x) + 1, and
that every minimum-length M -augmenting path is composed exclusively of advancing edges.
The Hopcroft-Karp inner loop begins by performing a breadth-first search to compute the
distance labels d(v), along with the set A of advancing edges and a counter c(v) for each
vertex that counts the number of incoming advancing edges at v, i.e. advancing edges of the
form (u, v) for some vertex u. It sets ` to be the minimum length of an M -augmenting path
(equivalently, the minimum of d(v) over all v ∈ R ∩ F ), marks every vertex as unexplored,
and repeatedly finds augmenting paths using the following procedure. Start at an unexplored
vertex v in R∩F such that d(v) = `, and trace backward along incoming edges in A until a
vertex u with d(u) = 0 is reached. Add this path P to the blocking set and add its vertices
to a “garbage collection” queue. While the garbage collection queue is non-empty, remove
the vertex v at the head of the queue, mark it as explored, and delete its incident edges
(both outgoing and incoming) from A. When deleting an outgoing edge (v, w), decrement
the counter c(w), and if c(w) is now equal to 0, then add u to the garbage collection queue.

The inner loop performs only a constant number of operations per edge — traversing it
during the BFS that creates the set A, traversing it while creating the blocking set of paths,
deleting it from A during garbage collection, and decrementing its tail’s counter during
garbage collection — and a constant number of operations per vertex: visiting it during the
BFS that creates the set A, initializing d(v) and c(v), visiting it during the search for the
blocking set of paths, marking it as explored, inserting it into the garbage collection queue,
and removing it from that queue. Therefore, the entire inner loop runs in linear time.

By design, the algorithm discovers a set of minimum-length M -augmenting paths that are
vertex disjoint, so we need only prove that this set is maximal. By induction on the number

6



of augmenting paths the algorithm has discovered, the following invariants hold whenever
the garbage collection queue is empty.

1. For every vertex v, c(v) counts the number of advancing edges (u, v) that have not yet
been deleted from A.

2. Whenever an edge e is deleted or a vertex v is placed into the garbage collection queue,
any path made up of advancing edges that starts in L∩F and includes edge e or vertex
v must have a vertex in common with the selected set of paths.

3. For every unmarked vertex v, c(v) > 0 and there exists a path in A from L ∩ F to v.
(The existence of such a path follows by tracing backwards along edges of A from v to
a vertex u such that d(u) = 0.)

The third invariant ensures that whenever the algorithm starts searching for an augmenting
path at an unmarked free vertex, it is guaranteed to find such a path. The second invariant
ensures that when there are no longer any unmarked free vertices v with d(v) = `, the set of
advancing edges no longer contains a path from L ∩ F to R ∩ F that is vertex-disjoint from
the selected ones; thus, the selected set forms a blocking set of augmenting paths as desired.

2 Non-bipartite matching

When the graph G is not bipartite, Lemma 2 is still valid: a matching has maximum cardi-
nality if and only if it has no augmenting path. Hence, as before, the problem of finding a
maximum matching reduces to the problem of finding an augmenting path with respect to a
given matching, or else certifying that there is none. However, whereas in the bipartite case
the problem of finding an augmenting path reduced to searching for a path in the directed
graph GM , in the non-bipartite case there is no correspondingly simple reduction.

To see why, it’s useful to consider what goes wrong with the näıve idea of searching for
an augmenting path using “breadth-first search over the set of alternating paths”. Here’s
one way of making this information idea precise. For a graph G and matching M , define
H(G,M) to be a directed graph with the same set of vertices as G, and with a directed edge
(u, v) for every pair of vertices such that G contains a path made up of two edges (u, u′) and
(u′, v) such that (u, u′) 6∈ M and (u′, v) ∈ M . Note that if G contains an M -augmenting
path made up of 2k + 1 edges, then the first 2k of those edges correspond to a k-edge path
in H(G,M) that starts in F , the set of free vertices, and ends in Γ(F ), the set of vertices
that are adjacent to a free vertex.

If the converse were true, i.e. if finding a path in H(G,M) from F to Γ(F ) were equivalent
to finding an M -augmenting path in G, then we could design a maximum non-bipartite
matching algorithm along exactly the same lines as in the bipartite case. Instead, there is a
second alternative represented by the diagram in Figure 1: a simple path in H(G,M) from
F to Γ(F ) might correspond to a non-simple alternating walk from F to N(F ) in G, i.e. an
alternating walk that repeats some vertices.

Definition 6. If G is a graph and M is a matching in G, a flower with respect to M is an
M -alternating walk u0, u1, . . . , us such that:

7



1. u0 is a free vertex with respect to M ;

2. the vertices u0, . . . , us−1 are distinct, whereas us = ur for some number r < s

3. r is even and s is odd.

The stem of the flower is the path u0, u1, . . . , ur. (Note that it is possible that r = 0, in
which case the stem is an empty path.) The blossom of the flower is the cycle ur, . . . , us.

u0 u1 u2 u3 u4

u5 u6

u7u8

Figure 1: A flower

Lemma 8. If the graph H(G,M) contains a path P from F to Γ(F ), then G contains either
an M-augmenting path or a flower.

Proof. Suppose that P = v0, v1, . . . , vk is a simple path in H(G,M) from F to Γ(F ). For
i = 1, 2, . . . , k, the edge (vi−1, vi) in H(G,M) corresponds to a sequence of two edges in
G, the first lying outside M and the second belonging to M . Denote these two edges by
(u2i−2, u2i−1) 6∈ M and (u2i−1, u2i) ∈ M . Since vk = u2k belongs to Γ(F ), we may choose a
free vertex u2k+1 adjacent to u2k. Now consider the alternating walk u0, u1, . . . , u2k+1 in G.
If all of its vertices are distinct, then it is an M -augmenting path. Otherwise, let us be the
earliest instance of a repeated vertex in the alternating walk, and let ur denote the earlier
occurrence of this same vertex.

If s is even, then the edge (us−1, us) belongs to M . Note that this means s is not a
free vertex, so r > 0. This means that either (ur−1, ur) or (ur, ur+1) belongs to M , hence
us−1 is equal to either ur−1 or ur+1. This contradicts our choice of s unless r + 1 = s − 1,
which is impossible because the case (ur, ur+1) ∈M only occurs when r is odd, in which case
r + 1 6= s− 1 because the left side is even and the right side is odd. Hence, the assumption
that s is even leads to a contradiction.

If s and r are both odd, then (ur, ur+1) ∈M so us is not a free vertex. In particular this
means that s < 2k + 1. The edge (us, us+1) belongs to M , which implies that us+1 = ur+1.
However, since s + 1 and r + 1 are even, the vertices us+1 and ur+1 both belong to P ,
contradicting the assumption that P is a simple path.

By process of elimination, we have deduced that s is odd and r is even, in which case the
sequence u0, . . . , us constitutes a flower.

If G contains a flower with blossom B, our algorithm for finding an M -augmenting path
in G will depend on an operation called blossom shrinking which forms a new graph G/B

8



with matching M/B, as follows. The vertices of B are replaced with a single vertex {vb}.
Edges having both endpoints in B are removed. For those having exactly one endpoint in
B, that endpoint is changed to vb and the other endpoint is preserved. Edges having no
endpoints in B are unchanged. Note that this operation may produce a multigraph (i.e.,
there may be multiple edges between the same two vertices) in the case that there is a
vertex having more than one neighbor in B. In the event that G/B contains multiple edges
between the same two vertices, we can discard all but one of those edges without affecting
the algorithm’s correctness; however, in our analysis we prefer to treat G/B as a multigraph
because it means that every edge of G/B has one unambiguous corresponding edge in G,
which simplifies the analysis.

Let M/B denote the set of edges in G/B whose corresponding edge in G belongs to M .
Note that M/B is a matching: for all vertices other than vb it is clear that they belong to
at most one edge in M/B, while for vb this holds because if ur, ur+1, . . . , us denotes the list
of vertices in B, in the order that they occur in the flower, then ur (also known as us) is the
only vertex in the blossom that potentially belongs to an edge of M whose other endpoint
lies outside of M .

u0 u1 u2

u3

u4 v

w

u0 u1 vb

v

w

Figure 2: Shrinking a blossom

The following lemma on the relationship between augmenting paths in G and those in
G/B accounts for the importance of the blossom shrinking operation.

Lemma 9. If G is a graph, M is a matching, and B is the blossom of a flower with respect
to M , then G/B contains an (M/B)-augmenting path if and only if G contains an M-
augmenting path. Furthermore, any (M/B)-augmenting path in G/B can be modified into
an M-augmenting path in G in time |B|.

Proof. Denote the vertices of the flower containing B by u0, . . . , us, numbered as in Defi-
nition 6. If P is an (M/B)-augmenting path in G/B and P does not contain vb, then it
is already an M -augmenting path in G. Otherwise, P contains an edge (w, vb) that does
not belong to M/B. Let (w, ut) be the corresponding edge of G, where r ≤ t < s. An M -
augmenting path in G can be constructed by replacing edge (w, vb) with an M -alternating
path from w to ur in G whose first and last edges do not belong to M . If t is even,
then replace edge (w, ut) with path w, ut, ut−1, . . . , ur; if t is odd, then replace (w, ut) with
w, ut, ut+1, . . . , us. Notice that the path segment that replaces (w, ut) has fewer than |B|
edges, and the replacement can be done in O(|B|) time if we use suitable data structures,
e.g. representing the path P as a doubly linked list of edges. This justifies the running time
bound in the last sentence of the lemma statement.

9



It remains for us to prove that if G contains an M -augmenting path, then G/B contains
an (M/B)-augmenting path. One might expect this to be a simple matter of reversing the
operation defined in the preceding paragraph, but in fact it’s a little trickier. To see why,
consider the augmenting path 〈v, u4, u3, w〉 in Figure 2. The corresponding path in G/B is
〈v, vb, w〉 which is not an alternating path with respect to M/B.

Instead, we first let S = {(ui−1, ui) | i = 1, . . . , r} denote the set of edges belonging to the
stem of the flower, and we modify M to M ′ = M ⊕S. Note that |M ′| = |M | and ur, ur+1, us
is a flower with respect to M ′ (having an empty stem). Hence, B is still a blossom with
respect to M ′, and M ′/B is still a matching in G/B, with the same number of edges as
M/B. We will now apply the following chain of reasoning to deduce the existence of an
(M/B)-augmenting path in G/B.

G has an M -augmenting path⇒M is not a maximum matching in G (Lemma 2)

⇒M ′ is not a maximum matching in G (|M | = |M ′|)
⇒ G has an M ′-augmenting path (Lemma 2)

⇒ G/B has an (M ′/B)-augmenting path (proven below)

⇒M ′/B is not a maximum matching in G/B (Lemma 2)

⇒M/B is not a maximum matching in G/B (|M/B| = |M ′/B|)
⇒ G/B has an (M/B)-augmenting path (Lemma 2)

The only step that remains to be justified is that the existence of an M ′-augmenting path
in G implies the existence of an (M ′/B)-augmenting path in G/B. Suppose that P is an
M ′-augmenting path in G. If P does not intersect B then it is already an augmenting path
in G/B. Otherwise, since B contains only one free vertex (namely ur), we know that at
least one endpoint of P does not belong to B. Number the vertices of P as v0, v1, . . . , vt with
v0 6∈ B, and suppose that vk is the lowest-numbered vertex of P that belongs to B. Then
the path 〈v0, v1, . . . , vk−1, vb〉 is an (M ′/B)-augmenting path in G/B, as desired.

Lemma 9 inspires the following algorithm for solving the maximum perfect matching
problem in non-bipartite graphs.

10



Algorithm 3 Edmonds’ non-bipartite matching algorithm

1: Initialize M = ∅.
2: repeat
3: P = Search(G,M) // Return augmenting path, or empty set if none exists.
4: M ←M ⊕ P
5: until P = ∅

6: procedure Search(G,M)
7: Build the graph H(G,M).
8: Search for a path P̂ from F to Γ(F ) in H(G,M).
9: if no path found then
10: Return P = ∅
11: end if
12: Post-process P̂ , as in the proof of Lemma 8, to extract an augmenting path or flower.
13: if augmenting path P is found then
14: Return P
15: else
16: Let B be the blossom of the flower.
17: Let P ′ = Search(G/B,M/B)
18: if P ′ = ∅ then
19: Return P = ∅
20: else
21: Transform P ′ to an M -augmenting path P as in the proof of Lemma 9.
22: end if
23: end if
24: end procedure

The algorithm’s outer loop (Lines 2 and 5) iterates at most n/2 times. In each iteration,
we make a sequence of recursive calls to the Search procedure, which searches for an
augmenting path. Each recursive call involves shrinking a blossom, which reduces the number
of vertices in the graph by at least 2. Hence, we call Search at most n/2 times within each
iteration of the outer loop. To assess the amount of work done in each call to Search
(excluding work done in recursive sub-calls to the same procedure) we start by observing
that the graph H(G,M) has n vertices and at most 2m edges, since the number of outgoing
edges from a vertex in H(G,M) is bounded above by the degree of that vertex in G. Hence,
building and searching the graph H(G,M) takes O(m) time. (Assuming, as always, that G
has no isolated vertices so that n = O(m).) The remaining steps of Search also take O(m)
steps, if not fewer, as can be seen by reviewing the proofs of Lemma 8 and Lemma 9. Hence,
the overall running time of Edmonds’ algorithm is bounded above by O(mn2).

11



3 Bipartite min-cost perfect matching

In the bipartite minimum-cost perfect matching problem, we are given an undirected bipar-
tite graph G = (L,R,E) as before, together with a (non-negative, real-valued) cost ce for
each edge e ∈ E. Assume |L| = |R|. Let c(u, v) = ce if e = (u, v) is an edge of G, and
c(u, v) = ∞ otherwise. From now on, we will consider G to be a complete bipartite graph,
with some edges having infinite cost. As always, let n denote the number of vertices and m
the number of finite-cost edges of G.

When S is a set of edges we will write c(S) to denote
∑

e∈S ce. The bipartite min-cost
perfect matching problem is to find a perfect matching M that minimizes c(M).

3.1 Iterative min-cost augmenting paths

Noting the success of augmenting-path methods at solving the maximum-cardinality bipar-
tite matching problem, it is logical to expect that they have a role to play in solving the
minimum-cost perfect matching problem as well. To begin with, we seek to understand how
augmenting paths affect the cost of a matching.

Lemma 10. If M is a matching and S is an edge set such that M ⊕ S is also a matching,
then

c(M ⊕ S) = c(M) + c(S \M)− c(S ∩M) (1)

Proof. The lemma follows immediately from the set-theoretic relation

M ⊕ S = (M \ (S ∩M)) ∪ (S \M)

and the observation that the two sets on the right side are disjoint.

In light of Lemma 10 we define the incremental cost of S relative to M as follows:

∆c(S;M) = c(S \M)− c(S ∩M). (2)

The following greedy algorithm starts with an empty matching and iteratively transforms it
into a perfect matching using the augmenting path of least incremental cost.

Algorithm 4 Greedy algorithm for minimium cost bipartite perfect matching.

1: Initialize M = ∅.
2: while M is not a perfect matching do
3: Find an M -augmenting path P that minimizes ∆c(P ;M).
4: M ←M ⊕ P
5: end while
6: Output M .

Proving the correctness of this algorithm is surprisingly tricky. The proof is by induction
on the number of loop iterations; the induction hypothesis is that the matching produced
after k iterations has the minimum cost among all matchings of size k. The base case k = 0
is obvious, and the induction step is encapsulated in the following lemma.

12



Lemma 11. If Mk is a minimum-cost matching of size k in G, and P is an Mk-augmenting
path of minimum incremental cost, then Mk ⊕ P is a minimum-cost matching of size k + 1.

Proof. Let Mk+1 denote a minimum-cost matching of size k+1. The inequality c(Mk⊕P ) ≥
c(Mk+1) is obvious because Mk⊕P is a matching of size k+1. In the remainder of the proof
we focus on proving the reverse inequality.

The symmetric difference Mk ⊕Mk+1 is made up of connected components, at least one
of which is an Mk-augmenting path. Denote this path by Q and let R be the union of the
remaining connected components of Mk ⊕ Mk+1. Note that R contains an equal number
of edges in Mk and in Mk+1 (because it total, the number of Mk+1 edges in the symmetric
difference Mk⊕Mk+1 exceeds the number of Mk edges by 1, and the path Q already accounts
for this excess) and that every component of R is alternating with respect to both Mk and
Mk+1. Therefore R ⊕Mk is a k-edge matching and R ⊕Mk+1 is a (k + 1)-edge matching.
Since Mk and Mk+1 are minimum-cost matchings for their respective cardinalities,

c(Mk) ≤ c(R⊕Mk) = c(Mk) + ∆c(R;Mk)

c(Mk+1) ≤ c(R⊕Mk+1) = c(Mk+1) + ∆c(R;Mk+1).

Therefore, ∆c(R;Mk) and ∆c(R;Mk+1) are both non-negative. On the other hand, they
sum to zero because

∆c(R;Mk) + ∆c(R;Mk+1) = [c(R ∩Mk+1)− c(R ∩Mk)] + [c(R ∩Mk)− c(R ∩Mk+1] = 0.

Hence, ∆c(R;Mk) and ∆c(R;Mk+1) are both equal to zero.

Recalling that P is an Mk-augmenting path of minimum incremental cost, we have the
inequality ∆c(P ;Mk) ≤ ∆c(Q;Mk). Combining this with the equation ∆c(R;Mk) = 0, we
find that

c(Mk ⊕ P ) = c(Mk) + ∆c(P ;Mk)

≤ c(Mk) + ∆c(Q;Mk)

= c(Mk) + ∆c(Q;Mk) + ∆(R;Mk)

= c(Mk) + ∆c(Q ∪R;Mk)

= c(Mk ⊕ (Q ∪R))

= c(Mk+1)

which confirms that Mk ⊕ P is a minimum cost matching of size k + 1.

To implement Algorithm 4, we need to specify how to compute the M -augmenting path P
that minimizes ∆c(P ;M). Recall thatM -augmenting paths are in one-to-one correspondence
with paths from L ∩ F to R ∩ F in the directed graph GM . Assign costs to the edges of
GM by specifying that directed edge (u, v) has cost c(u, v) if (u, v) 6∈ M and (v, u) has cost
−c(u, v) if (u, v) ∈M . According to this cost assignment, the cost of a path P in GM is equal
to ∆c(P ;M), so we have reduced the problem of finding an augmenting path of minimum
incremental cost to computing a minimum-cost path in GM from L ∩ F to R ∩ F . Since
GM has a mixture of positive and negative edge costs, the appropriate algorithm for finding

13



a minimum-cost path is the Bellman-Ford algorithm. In order for Bellman-Ford to succeed
in solving the minimum-cost path problem, we require that GM has no negative-cost cycles.
Fortunately, we can prove that there are no negative-cost cycles in GM . Indeed, if C is a
cycle in GM then C is an M -alternating cycle, hence M ⊕ C is a matching with the same
cardinality as M . By the induction hypothesis,

c(M) ≤ c(M ⊕ C) = c(M) + ∆c(C;M)

which verifies that ∆c(C;M) ≥ 0, i.e. the cost of cycle C is GM is non-negative.

The running time of the Bellman-Ford algorithm is O(mn), and Algorithm 4 requires n/2
iterations of its outer loop, with a call to Bellman-Ford in each iteration. Hence, the total
running time is O(mn2). Next, we will present a modified implementation that improves the
running time by finding a way to use Dijkstra’s algorithm instead of Bellman-Ford.

To be able to use Dijkstra’s algorithm, we need to modify the edge costs in GM so that
they become non-negative, yet searching for a minimum-cost path from L ∩ F to R ∩ F is
still equivalent to search for a minimum-incremental-cost M -augmenting path. The key idea
will be to place values yu on the vertices of GM and redefine the edge costs to equal the
following “reduced costs”:{

cy(u, v) = c(u, v)− yu − yv if (u, v) 6∈M
cy(v, u) = yu + yv − c(u, v) if (u, v) ∈M.

(3)

To explain when this modification of the edge costs is effective, we introduce the following
definition.

Definition 7. Let G be a bipartite graph with edge costs, and let M be a matching in
G. An assignment of values yu to the vertices of G is called M-compatible if it satisfies the
following properties.

1. yu + yv ≤ c(u, v) for all edges (u, v).

2. yu + yv = c(u, v) for all (u, v) ∈M .

3. yu = 0 for all u ∈ L ∩ F .

4. yv = yv′ for all v, v′ ∈ R ∩ F .

Lemma 12. Suppose M is a matching and y is M-compatible. Then cy(e) ≥ 0 for each edge
e in GM , and the M-augmenting paths P of minimum incremental cost are precisely those
that minimize cy(P ).

Proof. The relation cy(e) ≥ 0 follows from the definition of cy and from properties 1 and 2

14



of a compatible labeling. If P is an M -augmenting path from s ∈ L ∩ F to t ∈ R ∩R then

cy(P ) =
∑

(u,v)∈P\M

cy(u, v) +
∑

(u,v)∈P∩M

cy(v, u)

=
∑

(u,v)∈P\M

c(u, v)− yu − yv +
∑

(u,v)∈P∩M

yu + yv − c(u, v)

= ∆c(P ;M)− ys − yt (4)

= ∆c(P ;M)− yt. (5)

The second line follows from the definition of cy. The third line follows because the yu terms
corresponding to internal vertices of P cancel: each such vertex belongs to exactly one edge
of P \M and one edge of P ∩M . The fourth line follows from property 3 of a compatible
labeling.

To conclude the proof of the lemma, observe that property 4 of a compatible labeling
ensures that the value yt subtracted on the right side of (5) does not depend on the identity
of the vertex t, only on the fact that t ∈ R ∩ F .

With Lemma 12 in hand, the strategy for modifying Algorithm 4 becomes clear: we need
to compute a matching M and a vertex labeling y in each iteration, while maintaining the
property that y is M -compatible. Then, the search for the M -augmenting path of minimum
incremental cost can be carried out using Dijkstra’s algorithm on the graph GM with edge
costs defined by cy.

Algorithm 5 Improved algorithm for minimium cost bipartite perfect matching.

1: Initialize M = ∅.
2: Initialize yu = 0 for all u ∈ V .
3: while M is not a perfect matching do
4: Construct the graph GM and compute reduced costs cy.
5: Run Dijkstra’s algorithm to compute, for every w ∈ V (GM), the minimum-reduced-

cost path from L ∪ F to w. Denote the reduced cost of this path by d(w).
6: Let P be a minimum-reduced-cost path from L ∩ F to R ∩ F .
7: M ←M ⊕ P .
8: For all u ∈ L, yu ← yu − du.

9: For all v ∈ R, yv ←

{
yv + dv if v 6∈ F
yv + cy(P ) if v ∈ F.

10: end while
11: Output M .

Lemmas 11 and 12 already do most of the work of proving the correctness of this algo-
rithm. The only remaining step is to show that y in M -compatible in each iteration of the
algorithm.

Lemma 13. At the start of every iteration of Algorithm 5 the labeling y is M-compatible.

15



Proof. The proof is by induction on the number of iterations of the main loop. In the
base case when M = ∅ and yu = 0 for all u, property 1 of an M -compatible labeling is
satisfied because the edge costs are non-negative, and the remaining properties are trivially
satisfied. For the induction step, assume a loop iteration starts with matching M and with
M -compatible labeling y. Let M ′ = M ⊕P denote the new matching at the end of the loop
iteration, and let y′ denote the new labeling. For any edge e = (a, b) ∈ E(GM), we have

d(b) ≤ d(a) + cy(a, b) = d(a) + c(a, b)− ya − yb (6)

ya − d(a) + yb + d(b) ≤ c(a, b) (7)

and the two sides are equal if e belongs to a shortest path from L ∩ F to b in GM . We now
distinguish a few cases.

1. If (b, a) ∈M then cy(a, b) = 0 by the induction hypothesis. Hence d(b) = d(a) and

y′a + y′b = ya + d(a) + yb − d(b) = ya + yb = c(a, b).

2. If (a, b) ∈ P \M then e = (a, b) belongs to a shortest path from L∩F to b, namely P .
This means the two sides of (7) are equal. Since the left side equals y′a + y′b, we find
that y′a + y′b = c(a, b).

3. If (a, b) 6∈M ∪P then we apply (7) along with y′a = ya−d(a), y′b ≤ yb+d(b) to conclude
that y′a + y′b ≤ c(a, b).

In all three cases we conclude that y′ satisfies property 1 of a compatible labeling. Since
the edges of M ′ all belong to either M or P \M , and we have seen that y′a + y′b = c(a, b)
in both of those cases, property 2 is also satisfied. Property 3 follows from the observation
that for u ∈ L ∩ F , d(u) = 0 hence y′u = yu − d(u) = yu, which equals zero by the induction
hypothesis. Finally, property 4 follows from the induction hypothesis and the fact that for
v, w ∈ R ∩ F ,

y′v − yw = y′v − yw = cy(P ).

3.2 LP relaxation

A perfect matching M can be described by a matrix (xuv) of 0’s and 1’s, where xuv = 1 if
and only if (u, v) ∈M . The sum of the entries in each row and column of this matrix equals
1, since each vertex belongs to exactly one element of M . Conversely, for any matrix with
{0, 1}-valued entries, if each row sum and column sum is equal to 1, then the corresponding
set of edges is a perfect matching. Thus, the bipartite minimum-cost matching problem can
be expressed as follows.

min
∑

u,v c(u, v)xuy
s.t.

∑
v xuv = 1 ∀u∑
u xuv = 1 ∀v

xuv ∈ {0, 1} ∀u, v

16



This is a discrete optimization problem because of the constraint that xuv ∈ {0, 1}. Although
we already know how to solve this discrete optimization problem in polynomial time, many
other such problems are not known to have any polynomial-time solution. It’s often both
interesting and useful to consider what happens when we relax the constraint xuv ∈ {0, 1} to
xuv ≥ 0, allowing the variables to take any non-negative real value. This turns the problem
into a continuous optimization problem, in fact a linear program.

min
∑

u,v c(u, v)xuv
s.t.

∑
v xuv = 1 ∀u∑
u xuv = 1 ∀v

xuv ≥ 0 ∀u, v

How should we think about a matrix of values xuv satisfying the constraints of this linear
program? We’ve seen that if the values are integers, then it represents a perfect matching.
A general solution of this constraint set can be regarded as a fractional perfect matching.
What does a fractional perfect matching look like? An example is illustrated in Figure 3.
Is it possible that this fractional perfect matching achieves a lower cost than any perfect

2/3

1/3 1/3

1/6

1/2

1/2

1/2

1/6

1/6

1/6

1/2

1/2 1/2

1/3 1/3

1/3

= + +

Figure 3: A fractional perfect matching.

matching? No, because it can be expressed as a convex combination of perfect matchings
(again, see Figure 3) and consequently its cost is the weighted average of the costs of those
perfect matchings. In particular, at least one of those perfect matchings costs no more than
the fractional perfect matching illustrated on the left side of the figure. This state of affairs is
not a coincidence. The Birkhoff-von Neumann Theorem asserts that every fractional perfect
matching can be decomposed as a convex combination of perfect matchings. (Despite the
eminence of its namesakes, the theorem is actually quite easy to prove. You should try
finding a proof yourself, if you’ve never seen one.)

Now suppose we have an instance of bipartite minimum-cost perfect matching, and we
want to prove a lower bound on the optimum: we want to prove that every fractional perfect
matching has to cost at least a certain amount. How might we prove this? One way is to
run a minimum-cost perfect matching algorithm, look at its output, and declare this to be
a lower bound on the cost of any fractional perfect matching. (There exist polynomial-time
algorithms for minimum-cost perfect matching, as we will see later in this lecture.) By
the Birkhoff-von Neumann Theorem, this produces a valid lower bound, but it’s not very
satisfying. There’s another, much more direct, way to prove lower bounds on the cost of

17



every fractional perfect matching, by directly combining constraints of the linear program.
To illustrate this, consider the graph with edge costs as shown in Figure 4. Clearly, the

u1

u2

v1
1

3

v2

3

4

Figure 4: An instance of bipartite minimum cost perfect matching.

minimum cost perfect matching has cost 5. To prove that no fractional perfect matching
can cost less than 5, we combine some constraints of the linear program as follows.

2x11 + 2x21 = 2

−x11 − x12 = −1

4x12 + 4x22 = 4

Adding these constraints, we find that

x11 + 3x12 + 2x21 + 4x22 = 5 (8)

x11 + 3x12 + 3x21 + 4x22 ≥ 5 (9)

Inequality (9) is derived from (8) because the only change we made on the left side was to
increase the coefficient of x21 from 2 to 3, and we know that x21 ≥ 0. The left side of (9)
is the cost of the fractional perfect matching ~m. We may conclude that the cost of every
fractional perfect matching is at least 5.

What’s the most general form of this technique? For every vertex w ∈ L ∪R, the linear
program contains a “degree constraint” asserting that the degree of w in the fractional perfect
matching is equal to 1. For each degree constraint, we multiply its left and right sides by
some coefficient to obtain ∑

v

yuxuv = yu

for some u ∈ L, or ∑
u

yvxuv = yv

for some v ∈ R. Then we sum all of these equations, obtaining∑
(u,v)∈L×R

(yu + yv)xuv =
∑
u∈L

yu +
∑
v∈R

yv. (10)

If the inequality yu + yv ≤ c(u, v) holds for every (u, v) ∈ L×R, then in the final step of the
proof we (possibly) increase some of the coefficients on the left side of (10) to obtain∑

u,v

c(u, v)xuv ≥
∑
u∈L

yu +
∑
v∈R

yv,

18



thus obtaining a lower bound on the cost of every fractional perfect matching. This technique
works whenever the coefficients (yw)w∈L∪R satisfy yu + yv ≤ c(u, v) for every edge (u, v),
regardless of whether the values yu, yv are positive or negative. To obtain the strongest
possible lower bound using this technique, we would set the coefficients yu, yv by solving the
following linear program.

max
∑

w∈L∪R yw
s.t. yu + yv ≤ c(u, v) ∀u, v

This linear program is called the dual of the min-cost-fractional-matching linear program.
We’ve seen that its optimum constitutes a lower bound on the optimum of the min-cost-
fractional-matching LP. For any linear program, one can follow the same train of thought
to develop a dual linear program. (There’s also a formal way of specifying the procedure; it
involves taking the transpose of the constraint matrix of the LP.) The dual of a minimization
problem is a maximization problem, and its optimum constitutes a lower bound on the
optimum of the minimization problem. This fact is called weak duality; as you’ve seen,
weak duality is nothing more than an assertion that we can obtain valid inequalities by
taking linear combinations of other valid inequalities, and that this sometimes allows us to
bound the value of an LP solution from above or below. But actually, the optimum value of
an LP is always exactly equal to the value of its dual LP! This fact is called strong duality
(or sometimes simply “duality”), it is far from obvious, and it has important ramifications
for algorithm design. In the special case of fractional perfect matching problems, strong
duality says that the simple proof technique exemplified above is actually powerful enough
to prove the best possible lower bound on the cost of fractional perfect matchings, for every
instance of the bipartite min-cost perfect matching problem.

It turns out that there is a polynomial-time algorithm to solve linear programs. As you
can imagine, this fact also has extremely important ramifications for algorithm design, but
that’s the topic of another lecture.

3.3 Primal-dual algorithm

In this section we will construct a fast algorithm for the bipartite minimum-cost perfect
matching algorithm, exploiting insights gained from the preceding section. The basic plan of
attack is as follows: we will design an algorithm that simultaneously computes two things:
a minimum-cost perfect matching, and a dual solution (vector of yu and yv values) whose
value (sum of yu’s and yv’s) equals the cost of the perfect matching. As the algorithm runs,
it maintains a dual solution ~y and a matching M , and it preserves the following invariants:

1. Every edge (u, v) satisfies yu + yv ≤ c(u, v). If yu + yv = c(u, v) we say that edge
e = (u, v) is tight.

2. The elements of M are a subset of the tight edges.

3. The cardinality of M increases by 1 in each phase of the algorithm, until it reaches n.

Assuming the algorithm can maintain these invariants until termination, its correctness will
follow automatically. This is because the matching M at termination time will be a perfect

19



matching satisfying ∑
(u,v)∈M

c(u, v) =
∑

(u,v)∈M

yu + yv =
∑

w∈L∪R

yw,

where the final equation holds because M is a perfect matching. The first invariant of the
algorithm implies that ~y is a feasible dual solution, hence the right side is a lower bound on
the cost of any fractional perfect matching. The left side is the cost of the perfect matching
M , hence M has the minimum cost of any fractional perfect matching.

So, how do we maintain the three invariants listed above while growing M to be a perfect
matching? We initialize M = ∅ and ~y = 0. Note that the three invariants are trivially
satisfied at initialization time. Now, as long as |M | < n, we want to find a way to either
increase the value of the dual solution or enlarge M without violating any of the invariants.
The easiest way to do this is to find an M -augmenting path P consisting of tight edges: in
that case, we can update M to M⊕P without violating any invariants, and we reach the end
of a phase. However, sometimes it’s not possible to find an M -augmenting path consisting
of tight edges: in that case, we must adjust some of the dual variables to make additional
edges tight.

The process of adjusting dual variables is best described as follows. The easiest thing
would be if we could find a vertex u ∈ L that doesn’t belong to any tight edges. Then we
could raise yu by some amount δ > 0 until an edge containing u became tight. However,
maybe every u ∈ L belongs to a tight edge. In that case, we need to raise yu by δ while
lowering some other yv by the same amount δ. This is best described in terms of a vertex
set T which will have the property that if one endpoint of an edge e ∈M belongs to T , then
both endpoints of e belong to T . Whenever T has this property, we can set

δ = min{c(u, v)− yu − yv |u ∈ L ∩ T, v ∈ R \ T} (11)

and adjust the dual variables by setting yu ← yu+ δ, yv ← yv− δ for all u ∈ L∩T, v ∈ R∩T.
This preserves the feasibility of our dual solution ~p, ~q (by the choice of δ) and it preserves
the tightness of each edge e ∈ M because every such edge has either both or neither of its
endpoints in T .

Let F be the set of free vertices, i.e. those that don’t belong to any element of M . T will
be constructed by a sort of breadth-first search along tight edges, starting from the set L∩F
of free vertices in L. We initialize T = L ∩ F . Since |M | < n, T is nonempty. Define δ as
in (11); if δ > 0 then adjust dual variables as explained above. Call this a dual adjustment
step. If δ = 0 then there is at least one tight edge e = (u, v) from L∩T to R\T . If v is a free
vertex, then we have discovered an augmenting path P consisting of tight edges (namely, P
consists of a path in T that starts at a free vertex in L, walks to u, then crosses edge e to
get to v) and we update M to M ⊕ P and finish the phase. Call this an augmentation step.
Finally, if v is not a free vertex then we identify an edge e = (u′, v) ∈ M and we add both
v and u′ to T and call this a T -growing step. Notice that the left endpoint of an edge of M
is always added to T at the same time as the right endpoint, which is why T never contains
one endpoint of an edge of M unless it contains both.

A phase can contain at most n T -growing steps and at most one augmentation step.
Also, there can never be two consecutive dual adjustment steps (since the value of δ drops

20



to zero after the first such step) so the total number of steps in a phase is O(n). Let’s figure
out the running time of one phase of the algorithm by breaking it down into its component
parts.

1. There is only one augmentation step and it costs O(n).

2. There are O(n) T -growing steps and each costs O(1).

3. There are O(n) dual adjustment steps and each costs O(n).

4. Finally, every step starts by computing the value δ using (11). Thus, the value of δ
needs to be computed O(n) times. Näıvely it costs O(m) work each time we need to
compute δ.

Thus, a näıve implementation of the primal-dual algorithm takes O(mn2).

However, we can do better using some clever book-keeping combined with efficient data
structures. For a vertex w ∈ T , let s(w) denote the number of the step in which w was
added to T . Let δs denote the value of δ in step s of the phase, and let ∆s denote the sum
δ1 + · · ·+ δs. Let yu,s, yv,s denote the values of the dual variables associated to vertices u, v
at the end of step s. Note that

yu,s =

{
yu,0 + ∆s −∆s(u) if u ∈ L ∩ T
yu,0 if u ∈ L \ T

(12)

yv,s =

{
yv,0 −∆s + ∆s(v) if v ∈ R ∩ T
yv,0 if v ∈ R \ T

(13)

Consequently, if e = (u, v) is any edge from L ∩ T to R \ T at the end of step s, then

c(u, v)− yu,s − yv,s = c(u, v)− yu,0 −∆s + ∆s(u) − yv,0

The only term on the right side that depends on s is −∆s, which is a global value that is
common to all edges. Thus, choosing the edge that minimizes c(u, v)−yu,s−yv,s is equivalent
to choosing the edge that minimizes c(u, v)− yu,0 + ∆s(u) − yv,0. Let us maintain a priority
queue containing all the edges from L ∩ T to R \ T . An edge e = (u, v) is inserted into this
priority queue at the time its left endpoint u is inserted into T . The value associated to e in
the priority queue is c(u, v) − yu,0 + ∆s(u) − yv,0, and this value never changes as the phase
proceeds. Whenever the algorithm needs to choose the edge that minimizes c(u, v)−yv,s−yu,s,
it simply extracts the minimum element of this priority queue, repeating as necessary until
it finds an edge whose right endpoint does not belong to T . The total amount of work
expended on maintaining the priority queue throughout a phase is O(m log n).

Finally, our gimmick with the priority queue eliminates the need to actually update the
values yu, yv during a dual adjustment step. These values are only needed for computing the
value of δs, and for updating the dual solution at the end of the phase. However, if we store
the values s(u), s(v) for all u, v as well as the values ∆s for all s, then one can compute any
specific value of yu,s or yv,s in constant time using (12)-(13). In particular, it takes O(n)

21



time to compute all the values yu, yv at the end of the phase, and it only takes O(1) time to
compute the value δs = c(u, v) − yu − yv once we have identified the edge e = (u, v) using
the priority queue. Thus, all the work to maintain the values yu, yv amounts to only O(n)
per phase.

In total, the amount of work in any phase is bounded by O(m log n) and consequently
the algorithm’s running time is O(mn log n).

4 Online matching

The study of online algorithms concerns problems in which information about the input is
revealed over a sequence of time steps t = 1, 2, . . . and the algorithm must make decisions
in each time step, without knowing what information will be revealed in future steps. In
the online bipartite matching problem, there is a bipartite graph G = (L,R,E) where L is
known as the offline side and R is the online side. The contents of the set L are known to
the algorithm at initialization time (t = 0), whereas the remaining information about G is
revealed at times t = 1, 2, . . . , n = |R|, by exposing one vertex of R at each time step. When
vertex j ∈ R arrives, all of its incident edges are revealed. The algorithm is then allowed
to take one of the following actions: select one of the edges (i, j) that was revealed in the
current step; or do nothing. The set of selected edges is required to be a matching; thus,
if vertex i ∈ L belongs to a previously selected edge, then (i, j) may not be selected in the
current time step. The algorithm’s objective is to maximize the number of edges selected.

A variation of this problem is the online bipartite fractional matching problem, in which
the input sequence is the same, but the algorithm’s output at time j is a tuple of numbers
(xij)i∈L satisfying:

• xij = 0 when (i, j) 6∈ E.

•
∑

i∈L xij ≤ 1.

• for all i ∈ L,
∑

j∈R xij ≤ 1.

In other words, the matrix of values (xij)(i,j)∈L×R eventually computed by the algorithm
must belong to the fractional matching polytope of G. Fractional matching is of interest as
a problem in its own right, and also as a window into the design of randomized online bipartite
matching algorithms. From any such randomized algorithm, one can define a corresponding
deterministic online fractional bipartite matching algorithm, obtained by setting xij to be
the unconditional probability that the online algorithm selects edge (i, j). (Note that this
unconditional probability can be computed at the time when vertex j arrives — i.e., it does
not depend on any information to be revealed in the future — which is the reason why the
fractional matching algorithm is a valid online algorithm.) Note that there is no obvious way
to invert this transformation; in other words, given a deterministic fractional online matching
algorithm, there is no obvious way to obtain a randomized online matching algorithm whose
expected behavior yields the designated fractional algorithm.

22



4.1 A lower bound

What should we hope to achieve in an online bipartite matching algorithm? If we are
unreasonably optimistic, we might hope to design an algorithm that is guaranteed to output a
maximum cardinality matching. The following example shows that this is hopeless. Suppose
L = {i1, i2} and R = {j1, j2}. Consider two possible input sequences. In both of them,
vertex j1 arrives at time t = 1 and reveals that it is connected to both i1 and i2. At time
t = 2, vertex j2 arrives and reveals that it has only one neighbor: in Input 1 this neighbor
is i1; in Input 2 it is i2.

Notice that the maximum matching has size 2 in both of these inputs: j2 can be matched
to its only neighbor, whereas j1 can be matched to the remaining element of L. Also notice
that in both cases, this is the unique matching of size 2. Therefore, an online algorithm that
seeks to select the maximum matching faces an insurmountable predicament: at time t = 1
it must match j1 to one of its neighbors, there is a unique choice that is consistent with
picking the maximum matching, and there is no way to know which choice this is until time
t = 2. Thus, for every deterministic online algorithm, we can find an input instance that
causes the algorithm to select a matching of size at most 1, while the maximum matching
has size 2.

One can place this impossibility result in the broader context of competitive analysis of
online algorithms, which evaluates algorithms according to the following criterion.

Definition 8. An online algorithm for a maximization problem is c-competitive if there
exists a constant b such that for all input sequences,

c · ALG + b ≥ OPT,

where ALG and OPT denote the values of the algorithm’s solution and the optimum one,
respectively. It is strictly c-competitive if b = 0 in the above bound. A randomized algorithm
is c-competitive (against an oblivious adversary) if the above holds with E[ALG] in place of
ALG.

Our analysis of the two four-vertex input sequences above implies that deterministic
online matching algorithms cannot be strictly c-competitive for any c < 2. By considering
inputs comprising an arbitrarily long sequence of disjoint copies of either Input 1 or Input
2, we can eliminate the word “strictly” and conclude that deterministic algorithms cannot
be c-competitive for any c < 2.

Our above discussion of the relationship between randomized and fractional algorithms
shows that a lower bound on the competitive ratio of deterministic fractional online algo-
rithms implies the same lower bound on the competitive ratio of randomized online algo-
rithms. In particular, the competitive ratio of fractional (and hence randomized) online
matching algorithms can be bounded below by 4/3, by an easy analysis of the same set of
input sequences that furnished the lower bound of 2 for deterministic algorithms.

23



4.2 The greedy algorithm

It turns out that the example presented in Section 4.1 is the worst possible for deterministic
algorithms, from the standpoint of competitive analysis. There is a strictly 2-competitive
deterministic online algorithm. In fact, a competitive ratio of 2 is achieved by the most näıve
algorithm: the greedy algorithm that matches each new vertex j to an arbitrary unmatched
neighbor, i, whenever an unmatched neighbor exists.

Exercise 2. Prove that the greedy algorithm for online bipartite matching is strictly 2-
competitive.

4.3 Online fractional matching: the waterfilling algorithm

It turns out that online fractional matching algorithms can achieve competitive ratios sig-
nificantly better than 2, as we will see in this section.

First, a useful bit of terminology: we will refer to the sum
∑

j∈R xij as the fractional
degree of vertex i in fractional matching x. For a vertex j ∈ R the fractional degree is
defined similarly.

Perhaps the most natural idea for online fractional matching is to have each vertex j
balance load equally among its neighbors. In other words, if a new vertex j arrives and has
d neighbors, then for each neighbor i we set the value of xij to be 1/d, unless that would
violate the degree constraint of vertex i (the constraint that

∑
j xij ≤ 1) in which case we

merely increase xij as much as possible given the degree constraint.

However, this “stateless balancing” algorithm fails to be better than 2-competitive. To
construct a counterexample, we take the example form Section 4.1 and blow up each vertex
into n vertices, carefully modifying the edge set to cause the algorithm to make catastrophic
decisions. The set L now has 2n vertices, which we will label as a1, a2, . . . , an, b1, b2, . . . , bn,
and the set R has 2n vertices labeled c1, c2, . . . , cn, d1, d2, . . . , dn. Each vertex cj has n + 1
neighbors: it is connected to aj and also to b1, b2, . . . , bn. Each vertex dj has only one
neighbor, namely bj. The maximum matching in this graph has size 2n: it matches (ai, ci)
and (bi, di) for i = 1, . . . , n. If the vertices c1, . . . , cn, d1, . . . , dn arrive in that order, the
stateless balancing algorithm will first assign a value of 1

n+1
to each edge incident to c1, . . . , cn.

Thus, when d1, . . . , dn start arriving, each of them has a unique neighbor and the fractional
degree of that neighbor is already n

n+1
, so dj can contribute only 1

n+1
additional units to the

size of the fractional matching. Thus, when the algorithm is finished processing the entire
graph, the total size of its fractional matching is n+ n

n+1
, only slightly more than half of the

optimum.

What went wrong in this algorithm? The vertices b1, . . . , bn are more “highly demanded”
than a1, . . . , an and it was unwise for vertices c1, . . . , cn to use up almost all of the capacity
of b1, . . . , bn while using almost none of a1, . . . , an. The first vertex, c1, can be forgiven
for making this mistake since all of its neighbors looked indistinguishable when it arrived.
But later on, we should have known better: we had already seen that the capacities of
b1, . . . , bn were being depleted and should have taken measures to conserve that capacity. In
short, there was nothing evidently wrong with the load-balancing idea, but it was silly to do

24



stateless load-balancing; instead, we should have kept track of the current state (the amount
of load already placed on each vertex in L) and adjusted our load-balancing decisions to
correct for imbalances in the current load vector.

This bring us to the waterfilling algorithm. It keeps track of a “water level” for each
i ∈ L representing the current fractional degree d(i) =

∑
j xij, summing over all vertices

j ∈ R that have arrived in the past. When a new vertex j arrives, it allocates its one unit of
fractional degree among its neighbors by finding the neighbors with the lowest water level
and continuously raising their water level until either one unit of water has been poured
into the graph, or the water level of all neighbors reaches 1, whichever comes first. In less
metaphorical terms, the algorithm finds the unique number ˆ̀(j) such that∑

i∈N(j)

max{ˆ̀(j), d(i)} = 1 +
∑
i∈N(j)

d(i),

where N(j) represents the set of all neighbors of j. It then sets

`(j) = min{ˆ̀(j), 1}
xij = max{`(j), d(i)} − d(i) ∀(i, j) ∈ E

and it updates d(i) to d(i) + xij for all i.

We will analyze the waterfilling algorithm using the primal-dual method. This means
that we’ll use the fractional matching LP

max
∑

i,j xij
s.t.

∑
j xij ≤ 1 ∀i∑
i xij ≤ 1 ∀j

xij ≥ 0 ∀i, j

and its dual
min

∑
i αi +

∑
j βj

s.t. αi + βj ≥ 1 ∀(i, j) ∈ E
αi, βj ≥ 0 ∀i, j

In particular, we define a dual solution (αi)i∈L, (βj)j∈R by specifying that

αi = g(d(i)) ∀i (14)

βj = 1− g(`(j)) ∀j, (15)

where

g(y) =
ey − 1

e− 1
.

The choice of this specific function g will make more sense later in the analysis. The vital
properties of g that are needed in the analysis are:

1. g is an increasing function.
2. g(0) = 0
3. g(1) = 1

25



4. 1− g(t) + g′(t) = e
e−1 for all t.

First, let’s observe that the dual solution defined by (14)-(15) is feasible. This is be-
cause at the time we finish processing vertex j, the inequality d(i) ≥ `(j) is satisfied by
all neighboring vertices i. Since the value d(i) will not subsequently decrease, we also have
d(i) ≥ `(j) at termination. Furthermore, since g is an increasing function, we have

αi + βj = g(d(i)) + 1− g(`(j)) ≥ g(`(j)) + 1− g(`(j)) = 1,

which verifies dual feasibility.

We claim that the fractional matching and the dual solution computed by our algorithm
satisfy

e

e− 1

∑
(i,j)∈E

xij ≥
∑
i∈L

αi +
∑
j∈R

βj. (16)

By the weak duality, the sum on the right side is an upper bound on the size of any frac-
tional matching in G, and therefore (16) implies that the waterfilling algorithm is

(
e
e−1

)
-

competitive.

To prove (16), we compare βj with a parameter β′j defined as follows. For t ∈ [0, 1] let
nj(t) denote the number of edges (i, j) ∈ E such that the inequality d(i) ≤ t held at the
time when j arrived. Note that ∫ `(j)

0

nj(t) dt = 1

provided that `(j) < 1, because in that case vertex j contributed one unit of “water” and
the integrand denotes the rate at which water was filling the system as we increased the
water level ` from t to t+ dt. Now, define

β′j =

∫ `(j)

0

(1− g(t)) · nj(t) dt.

The inequality β′j ≥ βj always holds: when `(j) = 1 this is because βj = 0, and when
`(j) < 1 it is because 1− g(t) is a decreasing function of t and therefore∫ `(j)

0

(1− g(t)) · nj(t) dt > (1− g(`(j)) ·
∫ `(j)

0

nj(t) dt = 1− g(`(j)) = βj.

Letting d(i) denote the degree of a vertex i ∈ L before the arrival of vertex j, the amount

26



by which the dual objective increases when processing j is:

βj +
∑
i∈N(j)

[g(`(j))− g(d(i))] = 1− g(`(j)) +
∑
i∈N(j)

∫ `(j)

d(i)

g′(t) dt

= 1− g(`(j)) +

∫ `(j)

0

g′(t) · nj(t) dt

≤
∫ `(j)

0

[1− g(t) + g′(t)] · nj(t) dt

=
e

e− 1

∫ `(j)

0

nj(t) dt

=
e

e− 1

∑
i∈N(j)

xij,

hence the increase in the dual objective is at most e
e−1 times the increase in the primal ob-

jective. Since the primal and dual objectives both start out at zero, this means that the dual
objective at termination is at most e

e−1 times the primal objective, certifying inequality (16)

and completing the proof that the waterfilling algorithm is
(

e
e−1

)
-competitive.

4.4 The waterfilling algorithm is optimal

It turns out that e
e−1 is precisely the best competitive ratio that can be achieved by an

online fractional matching algorithm. To prove this, we consider an arbitrary fractional
matching algorithm ALG and evaluate its performance on a random input sequence generated
as follows. The graph G has vertex sets L = R = [n] = {1, . . . , n}. We sample a uniformly
random permutation π of the set [n], and we define the edge set of the graph to be

E = {(π(i), j) | i ≥ j}.

The elements of R arrive in the order j = 1, 2, . . . , n.

Observe first that there is always a perfect matching in G, consisting of the edges (π(j), j)
for j = 1, . . . , n. In fact, this is the unique perfect matching in G: one can easily show that
every perfect matching must contain the edge (π(j), j) for all j ∈ [n], by downward induction
on j starting from j = n.

To place an upper bound on the expected size of the matching produced by ALG, we
argue as follows. The expected value of xπ(i),j is zero if i < j, and it is at most 1

n+1−j if

i ≥ j. To see this latter fact, note that for any two elements i, k ∈ {j, j + 1, . . . , n}, we have
E[xπ(i),j] = E[xπ(k),j] by symmetry, since the subgraph of G consisting of all edges observed
up until time j has an automorphism that exchanges i and k. Since xπ(j),j = xπ(j+1),j =
· · · = xπ(n),j and the sum of these numbers is at most 1, each of them is at most 1

n+1−j .

Now, let k = n − dn/e e, and observe that
∑k

j=1
1

n+1−j is between 1 − 5
n

and 1. This is
proven by the integral test:

k∑
j=1

1

n+ 1− j
<

∫ n

n/e

dx

x
= 1

27



while

5

n
+

k∑
j=1

1

n+ 1− j
>

1

n+ 5
+

1

n+ 5
+ · · ·+ 1

n+ 1
+

k∑
j=1

1

n+ 1− j
>

∫ n+6

(n+6)/e

dx

x
= 1.

The expected size of the fractional matching produced by ALG is bounded above by:

n∑
i=1

E

[
i∑

j=1

xπ(i),j

]
≤

k∑
i=1

i∑
j=1

1

n+ 1− j
+

n∑
i=k+1

1

<

k∑
i=1

i∑
j=1

1

n+ 1− j
+

n∑
i=k+1

[
5

n
+

k∑
j=1

1

n+ 1− j

]

< 5 +
k∑
j=1

(k + 1− j) + (n− k)

n+ 1− j

= 5 + k < 5 +

(
1− 1

e

)
n.

As the expected size of the maximum matching is n, and the expected size of the fractional
matching produced by ALG is bounded above by 5 +

(
e−1
e

)
n, we see that ALG cannot be

c-competitive for any c < e
e−1 .

4.5 Randomized online matching: The ranking algorithm

(Most of this section is an excerpt from the paper “Randomized Primal-Dual Analysis of
ranking for Online Bipartite Matching” by N. Devanur, K. Jain, and R. Kleinberg, 2012.)

Given an online fractional matching algorithm, it is tempting to try constructing a ran-
domized online matching algorithm whose probability of choosing edge (i, j) is equal to the
value xij computed by the fractional matching algorithm. If such a transformation were
possible, it would yield a randomized online matching algorithm whose competitive ratio is
exactly the same as that of the given fractional matching algorithm. Unfortunately, such a
transformation is not possible in general. (For example, there is no randomized matching
algorithm whose probability of selecting each edge (i, j) is exactly equal to the value assigned
to that edge by the waterfilling algorithm. It is quite instructive to try proving this.)

However, there is a randomized online matching algorithm, known as ranking, that
achieves exactly the same competitive ratio as the waterfilling algorithm, namely e

e−1 . Since
the existence of a c-competitive randomized online matching algorithm implies the exis-
tence of a c-competitive online fractional matching algorithm, we can deduce that ranking
achieves the best possible competitive ratio for randomized online matching algorithms.

The ranking algorithm is actually very intuitive: at initialization time, it samples a
uniformly random total ordering of the vertices in L. Subsequently, as each vertex j ∈ R
arrives, if j has an unmatched neighbor in L then we choose the unmatched neighbor i that
comes earliest in the random ordering, and we add (i, j) to the matching.

28



To analyze the ranking algorithm, we begin with a reinterpretation of the algorithm in
a way that is conducive to our analysis. Instead of picking a random total ordering of the
vertices in L, each vertex in L picks a random number in [0, 1] and a vertex j ∈ R, upon its
arrival, is assigned to the unmatched neighbor who picked the lowest number. The algorithm
is presented as Algorithm 6 below.

Algorithm 6 The ranking algorithm.

1: for all i ∈ L do
2: Pick Yi ∈ [0, 1] uniformly at random
3: end for
4: for all j ∈ R do
5: When j arrives, let N(j) denote the set of unmatched neighbors of j
6: if N(j) = ∅ then
7: j remains unmatched
8: else
9: Match j to arg min{Yi : i ∈ N(j)}
10: end if
11: end for

To analyze the algorithm, we note the standard LP relaxation for matching and its dual.

maximize
∑

(i,j)∈E

xij s.t. minimize
∑
i∈L

αi +
∑
j∈R

βj s.t.

∀ i ∈ V,
∑

j:(i,j)∈E

xij ≤ 1. ∀ (i, j) ∈ E,αi + βj ≥ 1.

∀ (i, j) ∈ E, xij ≥ 0. ∀ i, j, αi, βj ≥ 0.

Our analysis constructs a dual solution which is also randomized. The dual variables
we construct may not always be feasible; in other words, they may violate the constraint
αi + βj ≥ 1 for some edges (i, j). However, the expected values of the dual variables will
constitute a feasible dual solution. The competitive ratio of e

e−1 will follow from the fact
that the value of the dual solution is always e

e−1 times the size of the matching found, and
that the expectation of the dual variables constitutes a feasible dual solution (whose value,
of course, is also e

e−1 times the expected size of the matching found).

Our construction of the duals depends on a monotone non-decreasing function h that is
closely related to the function g that came up in the analysis of the waterfilling algorithm
in Section 4.3. The formula for h is h(y) = ey−1 and its relevant properties are:

1. h is an increasing function;
2. h(1) = 1;

3. ∀θ ∈ [0, 1]
∫ θ
0
h(y) dy + 1− h(θ) = e−1

e
.

Note the similarity between the integral equation in property 3 of h and the differential equa-
tion in property 4 of the function g in Section 4.3; note also, however, that if we differentiate

29



both sides of the integral equation defining h we certainly don’t get the differential equation
defining g.

Whenever i is matched to j, let

αi = e
e−1 · h(Yi), βj = e

e−1 · (1− h(Yi)).

For all unmatched i and j, set αi = βj = 0. It will be useful to interpret the algorithm
as follows: on matching i to j, we generate a value of 1 for the primal, which translates
to a value of e

e−1 for the dual. Each unmatched vertex i ∈ L that is a neighbor of j offers
e
e−1 · (1− h(Yi)) of this value to j (to be assigned to βj), while keeping the rest to itself (to
be assigned to αi). Then j is matched to the vertex that makes the highest offer.

Before we show that the expectation of the duals is feasible, we need certain properties
of the algorithm specified by the following two lemmas. Let (i, j) ∈ E be any edge in the
graph. Consider an instance of the algorithm on G \ {i}, with the same choice of Yi′ for all
other i′ ∈ L. Let yc be the value of Yi′ for the i′ that is matched to j. Define yc to be 1 if j
is not matched. Let βcj be the value of βj in this run, i.e. βcj = e

e−1 · (1− h(yc)).

Lemma 14 (Dominance Lemma). Given Yi′ for all other i′ ∈ L, i gets matched if Yi < yc.

Proof. Suppose i is not matched when j arrives. This means that the run of the algorithm
until then is identical to the run without i. From the definition of yc, in the run without i,
j is matched to i′ such that Yi′ = yc. Since Yi < yc, j is matched to i.

Lemma 15 (Monotonicity Lemma). Given Yi′ for all other i′ ∈ L, for all choices of Yi,
βj ≥ βcj .

Proof. Consider executing the algorithm on graphs G and G \ {i} in parallel. At the start
of every step of the two parallel executions, the unmatched vertices in L for the G execution
constitute a superset of the unmatched vertices in L for the G\{i} execution. This statement
is easily proven by induction: given that it holds at the start of one step, the only way it
could be violated at the start of the next step is if the G execution chooses a vertex i′ ∈ L
that is also unmatched, but is not chosen, in the G \ {i} execution. Instead the G \ {i}
execution must choose some other vertex i′′ such that Yi′′ < Yi′ . By our induction hypothesis
i′′ was also unmatched in the G execution, contradicting the fact that the algorithm chose i′

instead.

When node j arrives, its unmatched neighbors in the G execution form a superset of its
unmatched neighbors in the G\{i} execution, so in the both executions j has an unmatched
neighbor whose Y -value is yc. If the algorithm instead chooses another neighbor of j, its
Y -value can be at most yc and hence, by the monotonicity of h, we have βj ≥ βcj .

We now show that the above properties of h imply a competitive ratio of e
e−1 for ranking.

Lemma 16. ranking is e
e−1-competitive.

Proof. Whenever i is matched to j, αi + βj = e
e−1 . Therefore the ratio of the dual solution

to the primal is always e
e−1 . We show that the dual is feasible in expectation. In particular,

we show that for all (i, j) ∈ E,
EYi [αi + βj] ≥ 1

30



for all choices of Yi′ for all i′ 6= i ∈ L. By the Dominance Lemma (Lemma 14) i is matched
whenever Yi ≤ yc. Hence

EYi [αi] ≥
e

e− 1

∫ yc

0

h(y) dy.

By the Monotonicity Lemma (Lemma 15), βj ≥ βcj = e
e−1 · (1 − h(yc)) for all choices of Yi.

The lemma now follows from the integral equation listed above as property 3 of h.

31


	Bipartite maximum matching
	Definitions
	Alternating paths and cycles; augmenting paths
	Bipartite maximum matching: Naïve algorithm
	The Hopcroft-Karp algorithm

	Non-bipartite matching
	Bipartite min-cost perfect matching
	Iterative min-cost augmenting paths
	LP relaxation
	Primal-dual algorithm

	Online matching
	A lower bound
	The greedy algorithm
	Online fractional matching: the waterfilling algorithm
	The waterfilling algorithm is optimal
	Randomized online matching: The ranking algorithm


