
Cornell University, Fall 2019 CS 6820: Algorithms
The Dinitz, Hopcroft-Karp, and Push-Relabel Algorithms 30 Sep 2020

These lecture notes present two closely related algorithms: Dinitz’s blocking-flow algo-
rithm for the maximum flow problem, and the Hopcroft-Karp bipartite maximum matching
algorithm. Both algorithms are based on the same insight: a potentially wasteful aspect of
earlier maximum flow and maximum matching algorithms is that they only use one aug-
menting path in each iteration, even if many augmenting paths are discovered in the process
of searching the residual graph. As long as the augmenting paths discovered are compatible,
meaning that one can augmenting all of them simultaneously without violating the flow or
matching constraints, then it is efficient to augment a large set of compatible paths before
rebuilding the residual graph and searching once again for additional augmenting paths.

Finally, in Section 3 we present a maximum flow algorithm that is not based on aug-
menting paths at all: the push-relabel algorithm, based on Karzanov’s notion of a preflow.

1 Dinitz’s Algorithm

Dinitz’s Algorithm improves the Edmonds-Karp Algorithm by discovering a blocking flow,
which is in some sense a maximal set of shortest augmenting paths that can be used simul-
taneously to update the current flow without violating capacity constraints.

Definition 1. If G is a flow network, f is a flow, and h is a flow in the residual graph Gf ,
then h is called a blocking flow if every shortest augmenting path in Gf contains at least one
edge that is saturated by h, and every edge e with he > 0 belongs to a shortest augmenting
path.

Algorithm 1 Dinitz(G)

1: f ← 0; Gf ← G
2: while Gf contains an s− t path P do
3: Let h be a blocking flow in Gf .
4: f ← f + h
5: Update Gf

6: end while
7: return f

Later we will specify how to compute a blocking flow. For now, let us focus on bounding
the number of iterations of the main loop. As in the analysis of the Edmonds-Karp algorithm,
the distance d(v) of any vertex v from the source s can never decrease during an execution
of Dinitz’s algorithm. Furthermore, the length of the shortest path from s to t in Gf must
strictly increase after each loop iteration: the edges (u, v) which are added to Gf at the end
of the loop iteration satisfy d(v) ≤ d(u) (where d(·) refers to the distance labels at the start

1

of the iteration) so any s-t path of length d(t) in the new residual graph would have to be
composed exclusively of advancing edges which existed in the old residual graph. However,
any such path must contain at least one edge which was saturated by the blocking flow,
hence deleted from the residual graph. Therefore, each loop iteration strictly increases d(t)
and the number of loop iterations is bounded above by n.

The algorithm to compute a blocking flow explores the subgraph composed of advancing
edges in a depth-first manner, repeatedly finding augmenting paths.

Algorithm 2 BlockingFlow(Gf)

1: h← 0
2: Let G′ be the subgraph composed of advancing edges in Gf .
3: Initialize c′(e) = r(e) (residual capacity of e) for each edge e in G′.
4: Initialize stack with 〈s〉.
5: repeat
6: Let u be the top vertex on the stack.
7: if u = t then
8: Let P be the path defined by the current stack. // Now augment h using P .
9: Let δ(P) = min{c′(e) | e ∈ P}.
10: h← h+ δ(P)1P .
11: c′(e)← c′(e)− δ(P) for all e ∈ P .
12: Delete edges with c′(e) = 0 from G′.
13: Let (u, v) be the newly deleted edge that occurs earliest in P .
14: Truncate the stack by popping all vertices above u.
15: else if G′ contains an edge (u, v) then
16: Push v onto the stack.
17: else
18: Delete u and all of its incoming edges from G′.
19: Pop u off of the stack.
20: end if
21: until stack is empty
22: return h

The block of code that augments h using P is called at most m times (each time results
in the deletion of at least one edge) and takes O(n) steps each time, so it contributes O(mn)
to the running time of BlockingFlow(Gf). At most n vertices are pushed onto the stack
before either a path is augmented or a vertex is deleted, so O(mn) time is spent pushing
vertices onto the stack. The total work done initializing G′, as well as the total work done
deleting vertices and their incoming edges, is bounded by O(m). Thus, the total running
time of BlockingFlow(Gf) is bounded by O(mn), and the running time over Dinitz’s
algorithm overall is bounded by O(mn2).

A modification of Dinitz’s algorithm using fancy data structures achieves running time
O(mn log n). The push-relabel algorithm, presented in Section 3 below, has a running time
of O(n3). The fastest known strongly-polynomial algorithm, due to Orlin, has a running
time of O(mn). There are also weakly polynomial algorithms for maximum flow in integer-

2

capacitated networks, i.e. algorithms whose running time is polynomial in the number of
vertices and edges, and the logarithm of the largest edge capacity, U .

2 The Hopcroft-Karp Algorithm

Recall that one can reduce the bipartite maximum matching problem to the maximum flow
problem by transforming an undirected bipartite graph G = (L,R,E) into a directed flow
network with vertex set V = {s, t}∪L∪R and unit-capacity edges (s, u) for all u ∈ L, (v, t)
for all v ∈ R, and (u, v) for all (u, v) in the edge set of the original bipartite graph.

The Hopcroft-Karp Algorithm for bipartite maximum matching simply runs Dinitz’s
maximum flow algorithm on the flow network produced by this reduction. As we shall soon
see, it is possible to prove a much better running time bound for this specialization of Dinitz’s
Algorithm. (Hopcroft and Karp discovered their algorithm independently of Dinitz’s work,
which was published in a Soviet math journal in 1970 and was not known in the West until
its popularization by Shimon Even and Alon Itai in 1974. The Hopcroft-Karp Algorithm was
independently discovered and analyzed by Alexander Karzanov in the Soviet Union; both
papers were published in 1973.)

The improved running time bound for the Hopcroft-Karp stems from two observations,
encapsulated in the following two lemmas.

Lemma 1. The Hopcroft-Karp algorithm terminates after fewer than 2
√
n iterations of its

outer loop.

Proof. After the first
√
n iterations of the outer loop are complete, the minimum length of

an M -augmenting path is greater than
√
n. If M∗ denotes a maximum matching, and the

cardinality of M∗ satisfies |M∗| = |M |+ k, then the symmetric difference M∗ ⊕M contains
at least k vertex-disjoint M -augmenting paths; if each of these paths has at least

√
n vertices

then it must be the case that k ≤
√
n. Each remaining iteration of the outer loop strictly

increases |M |, hence there are fewer than
√
n outer loop iterations remaining.

Lemma 2. When algorithm BlockingFlow(Gf) is called on a residual graph Gf whose
edge capacities are {0, 1}-valued, it runs in O(m) time.

Proof. The algorithm BlockingFlow(Gf) performs three types of work: augmenting a
path P , pushing vertices onto the stack, and popping vertices off the stack. The number of
operations performed in augmenting a path P is proportional to the length of P ; we charge
these operations to the edges of the path, assigning a charge of O(1) to each edge of P when
the path is augmented. The number of operations performed when pushing a vertex v onto
the stack or popping it off the stack is O(1); we charge these operations to the edge (u, v),
where u is the vertex directly beneath v in the stack when the operation is performed. In
this way, each operation is charged to an edge. We will show that each edge is charged for
only O(1) operations. Summing over edges, this yields the O(m) bound stated in the lemma.

The key observation is that the residual capacity of each edge in Gf is equal to 1. Hence,
whenever BlockingFlow(G) augments a path P , it sets δ(P) = 1, reduces the residual

3

capacity of each edge of P to zero, and deletes the edge from G′. Thus, each edge of G belongs
to at most one augmenting path, and is charged only O(1) for augmentation operations. The
only other reason BlockingFlow(G) might pop v from the stack (other than using v in
an augmenting path) is if it discovers that v has no remaining outgoing edges; when that
happens, v and its incoming edges, including (u, v), are deleted from G′. Since we have
argued that (u, v) is deleted the first time v is popped from the stack, it follows also that
(u, v) is only pushed onto the stack at most once. We have shown that, in total, (u, v)
participates in at most one push, at most one pop, and at most one path augmentation,
resulting in O(1) operations being charged to (u, v) as claimed.

Theorem 3. The Hopcroft-Karp Algorithm computes a maximum matching in a bipartite
graph in O(m

√
n) time.

Proof. The theorem is a direct consequence of Lemma 1, which bounds the number of loop
iterations by 2

√
n, and Lemma 2, which bounds the amount of time per iteration by O(m).

3 The Push-Relabel Algorithm

In this section we present an algorithm to compute a maximum flow in O(n3) time. Un-
like the algorithms presented in earlier lectures, this one is not based on augmenting paths.
Augmenting-path algorithms maintain a feasible flow at all times and terminate when the
residual graph has no s − t path. The push-relabel algorithm maintains the invariant that
the residual graph contains no s − t path, and it terminates when it has found a feasible
flow. The state of the algorithm before terminating is described by a more general structure
called a preflow.

Definition 2. A preflow in a flow network G = (V,E, c, s, t) is a function f : V 2 → R that
satisfies

1. skew-symmetry: f(u, v) = −f(v, u) for all u, v ∈ V

2. semi-conservation:
∑

u∈V f(u, v) ≥ 0 for all v 6= s

3. capacity: f(u, v) ≤ c(u, v) for all u, v ∈ V .

The non-negative quantity x(v) =
∑

u∈V f(u, v) is called the excess of v with respect to f .

Note that a preflow is a flow if and only if every vertex except s and t has zero excess.
The preflow-push algorithm works by always pushing flow away from vertices with positive
excess. This is done using an operation Push(v, w) that pushes enough flow on edge (v, w)
to either saturate the edge or remove all of the excess at v. The former case is called a
saturating push, the latter is a push.

Push(v, w):
δ ← min{x(v), r(v, w)}
f(v, w)← f(v, w) + δ

4

f(w, v)← f(w, v)− δ
Note that the quantity δ in the Push operation is carefully chosen to ensure that if f is

a preflow before performing Push(v, w) then it remains a preflow afterward. This is because
x(v) decreases by δ, hence it cannot become negative, and f(v, w) increases by δ, hence it
cannot exceed f(v, w) + r(v, w) = c(v, w).

To keep track of where and when to push flow in the network, and to ensure that flow is
going toward the sink, the algorithm makes use a height function taking non-negative integer
values. The height function will satisfy the following invariants.

1. boundary conditions: h(s) = n, h(t) = 0;

2. steepness condition: for all edges (v, w) in the residual graph Gf , h(v) ≤ h(w) + 1.

The following two lemmas underscore the importance of the height function invariants.

Lemma 4. If f is a flow, h is a height function satisfying the steepness condition, and
v0, v1, . . . , vk is a path in the residual graph Gf , then h(v0) ≤ h(vk) + k.

Proof. The proof is by induction on k. When k = 0 the lemma holds vacuously. For
k > 0, the induction hypothesis and the steepness condition imply h(v0) ≤ h(v1) + 1 ≤
h(vk) + (k − 1) + 1, and the lemma follows.

Lemma 5. If f is a flow and h is a height function satisfying the boundary and steepness
conditions, then f is a maximum flow.

Proof. To prove that f is a maximum flow it suffices to prove that Gf has no path from s
to t. Since Gf has only n vertices, every simple path v0, . . . , vk in Gf satisfies k ≤ n− 1 and
hence, by Lemma 4, h(v0) ≤ h(vk) + n − 1. The boundary condition now implies that the
endpoints of the path cannot by s and t.

The following algorithm, known as the push-relabel algorithm, computes a maximum
flow by maintaining a preflow f and height function h satisfying the boundary and steepness
conditions. The flow f is modified by a sequence of Push operations, and the height function
h is modified by a sequence of Relabel operations, each of which increments the height
of a vertex to enable future push operations without risking a violation of the steepness
condition. (To see why Push(v, w) may risk violating the steepness condition, note that it
may introduce a new edge (w, v) into the residual graph. Hence, Push(v, w) should only be
applied when h(v) ≥ h(w)− 1.)

5

Algorithm 3 Push-Relabel Algorithm

Initialize h(s) = n and h(v) = 0 for all v 6= s.

Initialize f(u, v) =

c(u, v) if u = s

−c(v, u) if v = s

0 otherwise.

Initialize x(s) = 0 and x(v) = c(s, v) for all v 6= s.
while there exists v such that x(v) > 0 do

Pick v of maximum height among the vertices with x(v) > 0.
if there exists w such that r(v, w) > 0 and h(v) > h(w) then

Push(v, w)
else

h(v)← h(v) + 1
end if

end while
return f

By design, the algorithm maintains the invariants that f is a preflow and h satisfies the
boundary and steepness conditions. Hence, if it terminates, by Lemma 5 it must return
a maximum flow. The remainder of the analysis is devoted to proving termination and
bounding the running time. Our first task will be to bound the heights of vertices with
positive excess.

Lemma 6. If f is a preflow and v is a vertex with x(v) > 0, then Gf contains a path from
v to s.

Proof. Let A denote the set of all u such that Gf contains a path from u to s, and let
B = V \ A. Note that Gf contains no edges from B to A. We have∑

v∈B

x(v) =
∑
v∈B

∑
u∈V

f(u, v)

=
∑
v∈B

∑
u∈A

f(u, v) (All other terms cancel, by skew-symmetry.)

=
∑
v∈B

∑
u∈A

−f(v, u)

≤
∑
v∈B

∑
u∈A

r(v, u) = 0,

which shows that the sum of excesses of the vertices in B is non-positive. Since s 6∈ B and s
is the only vertex that has negative excess, it follows that every vertex in B has zero excess.
In other words, all of the vertices with positive excess belong to A, QED.

Lemma 7. If f is a preflow and h is a height function satisfying the boundary and steepness
conditions, then h(v) ≤ 2n− 1 for all v such that x(v) > 0.

Proof. This follows directly from Lemmas 4 and 6 and the fact that h(s) = n.

6

It’s time to start bounding the number of operations the algorithm performs.

Relabelings. Since the graph has n vertices and the height of each one never exceeds 2n,
the number of relabel operations is bounded by 2n2.

Saturating pushes. Each time a saturating push occurs on edge (v, w), it is removed
from Gf . Also, note that Push(v, w) is only executed if h(v) > h(w). In order for (v, w)
to reappear as an edge of Gf , it must regain positive residual capacity through application
of the operation Push(w, v). However, in order for Push(w, v) to take place, it must be
the case that the height of w increased to exceed that of v, meaning that w was relabeled
at least twice. Since w is relabeled at most 2n times in total, we conclude that edge (v, w)
experiences at most n saturating pushes. Summing over all m edges of the graph and their
reversals, the algorithm performs at most 2mn saturating pushes.

Non-saturating pushes. This is the hardest part of the analysis. To bound non-saturating
pushes we define

H = max{h(v) | x(v) > 0}

and divide the algorithm’s execution into phases during which H is constant. In other words,
each time the value of H changes, a phase ends and the next phase begins. Now, since H can
only increase when a relabel operation takes place, the total amount by which H increases is
bounded by 2n2. The H starts at 0 and is always non-negative, the total amount by which
H decreases is also at most 2n2. Hence, the number of phases is bounded by 4n2. During
a phase, we claim that each vertex experiences at most one non-saturating push. Indeed,
during a phase we only perform Push(v, w) if h(v) = H and x(v) > 0. If the operation is
a non-saturating push then x(v) = 0 afterward, and the only way for v to acquire positive
excess is if some other operation Push(u, v) is later performed. However, for Push(u, v) to
be performed we would need to have h(u) = H+1, implying that the next phase has already
begun. Thus, during a phase there can be at most one non-saturating push per node, or n
non-saturating pushes in total. As there are at most 4n2 phases, there can be at most 4n3

non-saturating pushes.

4 Some combinatorial applications of maximum flow

This section illustrates some combinatorial applications of maximum flow algorithms and of
the two main structural results we’ve seen about flows: the max-flow min-cut theorem and
the flow integrality theorem.

4.1 An application of flow integrality to discrepancy minimization

Combinatorial discrepancy theory is concerned with the existence (or non-existence) of finite
sets F such that the uniform distribution over F approximates a given probability distri-

7

bution as closely as possible. In this section we illustrate a typical application of the flow
integrality theorem to discrepancy theory.

Suppose we are given a set A = {a1, a2, . . . , am} and two different partitions of A into
nonempty sets: A = B1 t B2 t · · · t Br and A = C1 t C2 t · · · t Cs. We are also given
numbers k1, k2, . . . , kr. Our goal is to select a set F that contains ki elements from each set
Bi, so that F appears “as random as possible” from the standpoint of its intersection with
each Cj. To interpret the phrase “as random as possible”, observe that a random ki-element
subset of Bi contains ki · |Bi ∩ Cj|/|Bi| elements of Cj in expectation. If we define

φij = ki · |Bi ∩ Cj|/|Bi|

Φj =
r∑

i=1

φij

then our goal will be to ensure that the selected set F satisfies

∀j bΦjc ≤ |F ∩ Cj| ≤ dΦje. (1)

Two applications that motivate this problem are the following.

symposium speakers: Imagine you’re organizing a symposium to celebrate your depart-
ment’s 50th anniversary. To construct the list of speakers, you plan to invite two Ph.D.
graduates from each of the first five decades of the department’s history, and you’d
like the number of speakers in each research area to match, as closely as possible, the
expected number that would be produced if you randomly sampled two Ph.D. gradu-
ates from each decade. This corresponds to letting A be the set of all Ph.D. graduates
from the first five decades, partitioning these potential speakers according to decade
(Bi) and research area (Cj), and setting ki = 2 for all i.

carpool planning: This example is drawn from Chapter 7, Exercise 27, of Kleinberg and
Tardos’s textbook “Algorithm Design.” A set of n people share a car over a period of
d days. Let A denote the set of pairs (i, j) such that person j will ride in the car on
day i. We wish to choose one driver for each day; this corresponds to letting Bi be
the set of all ordered pairs in A whose first component is i, and setting ki = 1 for
all i. The goal is satisfy a fairness constraint that the number of times each person
is required to drive the car is as close as possible to their “driving obligation,” where
each day is deemed to generate one unit of driving obligation divided equally among
the occupants of the car that day. The fairness constraint is modeled by letting Cj

be the set of ordered pairs in A whose second component is j, and noting that φij

equals 1/p if p people are scheduled to drive in the car on day i and person j is one of
them, otherwise φij = 0. Hence the quantity Φj defined above matches the definition
of “driving obligation” given in this paragraph.

Using the flow integrality theorem, we can prove that a set F satisfying the discrepancy
constraints (1) always exists. We use a flow network G with the following vertices:

• source s, sink t

8

• vertex bi representing the set Bi for i = 1, . . . , r

• vertex cj representing the set Cj for j = 1, . . . , s

• additional “gadget vertices” d0, d1, . . . , ds.

The edges of G and their capacities are as follows:

• an edge (s, bi) of capacity ki for each i

• an edge (bi, cj) of capacity dφije for each i, j

• edge (cj, dj) and (dj, t), both of capacity bΦjc, for each j

• an edge (cj, d0) of capacity 1 for each j such that Φj is not an integer

• an edge (d0, t) of capacity
∑r

i=1 ki −
∑s

j=1bΦjc.

Note that the cuts ({s}, V \ {s}) and (V \ {t}, {t}) both have capacity K =
∑r

i=1 ki, so the
maximum flow value in the network is at most K. Furthermore, the network is designed to
have a fractional flow of value K; the edges with positive flow values are as follows.

• f(e) = c(e) for e ∈ {(s, bi) : 1 ≤ i ≤ r} ∪ {(dj, t) : 0 ≤ j ≤ s}

• f(bi, cj) = φij

• f(cj, dj) = bΦjc

• f(cj, d0) = Φj − bΦjc

This satisfies flow conservation at bi because

s∑
j=1

φij =
s∑

j=1

ki · |Bi ∩ Cj|
|Bi|

=
ki
|Bi|

s∑
j=1

|Bi ∩ Cj| =
ki
|Bi|
· |Bi| = ki

and it satisfies flow conservation at cj because Φj =
∑r

i=1 φij by definition.

Since G has integer-valued capacities, the flow integrality theorem ensures that there
exists an integer-valued maximum flow. We have seen that the maximum flow value in G
equals K, so there exists an integer-valued flow, f ∗, whose value is K. If we select a set F
by choosing f(bi, cj) elements from each set Bi ∩ Cj, then F will have exactly ki elements
from each set Bi, and it will have at least bΦjc and at most dΦe elements of Cj for each j,
because the flow coming out of vertex cj must saturate the edge (cj, dj) and must fit within
the combined capacity of edges (cj, dj) and (cj, d0).

9

4.2 Combinatorial applications of the max-flow min-cut theorem

In combinatorics, there are many examples of “min-max theorems” asserting that the mini-
mum of XXX equals that maximum of YYY, where XXX and YYY are two different combinatorially-
defined parameters related to some object such as a graph. Often these min-max theorems
have two other salient properties.

1. It’s straightforward to see that the maximum of YYY is no greater than the minimum
of XXX, but the fact that they are equal is usually far from obvious, and in some cases
quite surprising.

2. The theorem is accompanied by a polynomial-time algorithm to compute the minimum
of XXX or the maximum of YYY.

Most often, these min-max relations can be derived as consequences of the max-flow min-cut
theorem. (Which is, of course, one example of such a relation.) This also explains where the
accompanying polynomial-time algorithm comes from.

There is a related phenomenon that applies to decision problems, where the question is
whether or not an object has some property P, rather than a question about the maximum or
minimum of some parameter. Once again, we find many theorems in combinatorics asserting
that P holds if and only if Q holds, where:

1. It’s straightforward to see that Q is necessary in order for P to hold, but the fact that
Q is also sufficient is far from obvious.

2. The theorem is accompanied by a polynomial-time algorithm to decide whether prop-
erty P holds.

Once again, these necessary and sufficient conditions can often be derived from the max-flow
min-cut theorem

The main purpose of this section is to illustrate five examples of this phenomenon. Before
getting to these applications, it’s worth making a few other remarks.

1. The max-flow min-cut theorem is far from being the only source of such min-max
relations. For example, many of the more sophisticated ones are derived from the
Matroid Intersection Theorem, which is a topic that we will not be discussing this
semester.

2. Another prolific source of min-max relations, namely LP Duality, has already been
discussed informally this semester, and we will be coming to a proof later on. LP
duality by itself yields statements about continuous optimization problems, but one
can often derive consequences for discrete problems by applying additional special-
purpose arguments tailored to the problem at hand.

3. The “applications” in this section belong to mathematics (specifically, combinatorics)
but there are many real-world applications of maximum flow algorithms. See Chap-
ter 7 of Kleinberg & Tardos for applications to airline routing, image segmentation,
determining which baseball teams are still capable of getting into the playoffs, and
many more.

10

4.3 Preliminaries

The combinatorial applications of max-flow frequently rely on an easy observation about
flow algorithms. The following theorem asserts that essentially everything we’ve said about
network flow problems remains valid if some edges of the graph are allowed to have infinite
capacity. Thus, in the following theorem, we define the term flow network to be a directed
graph G = (V,E) with source and sink vertices s, t and edge capacities (ce)e∈E as before
— including the stipulation that the vertex set V is finite — but we allow edge capacities
c(u, v) to be any non-negative real number or infinity. A flow is defined as before, except
that when c(u, v) =∞ it means that there is no capacity constraint for edge (u, v).

Theorem 8. If G is a flow network containing an s-t path made up of infinite-capacity edges,
then there is no upper bound on the maximum flow value. Otherwise, the maximum flow value
and the minimum cut capacity are finite, and they are equal. Furthermore, any maximum
flow algorithm that specializes the Ford-Fulkerson algorithm (e.g. Edmonds-Karp or Dinic)
remains correct in the presence of infinite-capacity edges, and its worst-case running time
remains the same.

Proof. If P is an s-t path made up of infinite capacity edges, then we can send an unbounded
amount of flow from s to t by simply routing all of the flow along the edges of P . Otherwise,
if S denotes the set of all vertices reachable from s by following a directed path made up of
infinite-capacity edges, then by hypothesis t 6∈ S. So if we set T = V \ S, then (S, T) is an
s-t cut and every edge from S to T has finite capacity. It follows that c(S, T) is finite, and
the maximum flow value is finite.

We now proceed by constructing a different flow problem Ĝ with the same directed graph
structure finite edge capacities ĉe, and arguing that the outcome of running Ford-Fulkerson
doesn’t change when its input is modified from G to Ĝ. The modified edge capacities in Ĝ
are defined by

ĉ(u, v) =

{
c(u, v) if c(u, v) <∞
c(S, T) + 1 if c(u, v) =∞.

If (S ′, T ′) is any cut in Ĝ then either ĉ(S ′, T ′) > ĉ(S, T) = c(S, T), or else ĉ(S ′, T ′) = c(S ′, T ′);
in particular, the latter case holds if (S ′, T ′) is a minimum cut in Ĝ. To see this, observe
that if ĉ(S ′, T ′) ≤ ĉ(S, T) = c(S, T), then for any u ∈ S ′, v ∈ T ′, we have ĉ(u, v) ≤ c(S, T)
and this in turn implies that ĉ(u, v) = c(u, v) for all u ∈ S ′, v ∈ T ′, and consequently
ĉ(S ′, T ′) = c(S ′, T ′).

Since Ĝ has finite edge capacities, we already know that any execution of the Ford-
Fulkerson algorithm on input Ĝ will terminate with a flow f whose value is equal to the
minimum cut capacity in Ĝ. As we’ve seen, this is also equal to the minimum cut capacity
in G itself, so the flow must be a maximum flow in G itself. Every execution of Ford-Fulkerson
on Ĝ is also a valid execution on G and vice-versa, which substantiates the final claim about
running times.

11

4.4 Menger’s Theorem

As a first application, we consider the problem of maximizing the number of disjoint paths
between two vertices s, t in a graph. Menger’s Theorem equates the maximum number of
such paths with the minimum number of edges or vertices that must be deleted from G in
order to separate s from t.

Definition 3. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. Two s − t paths P, P ′ are edge-disjoint if there is no edge that belongs to both paths.
They are vertex-disjoint if there is no vertex that belongs to both paths, other than s and t.
(This notion is sometimes called internally-disjoint.)

Definition 4. Let G be a graph, either directed or undirected, with distinguished vertices
s, t. An s − t edge cut is a set of edges C such that every s − t path contains an edge of
C. An s− t vertex cut is a set of vertices U , disjoint from {s, t}, such that every s− t path
contains a vertex of U .

Theorem 9 (Menger’s Theorem). Let G be a (directed or undirected) graph and let s, t be
two distinct vertices of G. The maximum number of edge-disjoint s − t paths equals the
minimum cardinality of an s− t edge cut, and the maximum number of vertex-disjoint s− t
paths equals the minimum cardinality of an s − t vertex cut. Furthermore the maximum
number of disjoint paths can be computed in polynomial time.

Proof. The theorem actually asserts four min-max relations, depending on whether we work
with directed or undirected graphs and whether we work with edge-disjointness or vertex-
disjointness. In all four cases, it is easy to see that the minimum cut constitutes an upper
bound on the maximum number of disjoint paths, since each path must intersect the cut
in a distinct edge/vertex. In all four cases, we will prove the reverse inequality using the
max-flow min-cut theorem.

To prove the results about edge-disjoint paths, we simply make G into a flow network by
defining c(u, v) = 1 for all directed edges (u, v) ∈ E(G); if G is undirected then we simply set
c(u, v) = c(v, u) = 1 for all (u, v) ∈ E(G). The theorem now follows from two claims: (A) an
integer s− t flow of value k implies the existence of k edge-disjoint s− t paths and vice versa;
(B) a cut of capacity k implies the existence of an s− t edge cut of cardinality k and vice-
versa. To prove (A), we can decompose an integer flow f of value k into a set of edge-disjoint
paths by finding one s − t path consisting of edges (u, v) such that f(u, v) = 1, setting the
flow on those edges to zero, and iterating on the remaining flow; the transformation from
k disjoint paths to a flow of value k is even more straightforward. To prove (B), from an
s − t edge cut C of cardinality k we get an s − t cut of capacity k by defining S to be all
the vertices reachable from s without crossing C; the reverse transformation is even more
straightforward.

To prove the results about vertex-disjoint paths, the transformation uses some small “gad-
gets”. Every vertex v in G is transformed into a pair of vertices vin, vout, with c(vin, vout) = 1
and c(vout, vin) = 0. Every edge (u, v) in G is transformed into an edge from uout to vin with
infinite capacity. In the undirected case we also create an edge of infinite capacity from vout
to uin. Now we solve max-flow with source sout and sink tin. As before, we need to establish

12

two claims: (A) an integer sout− tin flow of value k implies the existence of k vertex-disjoint
s− t paths and vice versa; (B) a cut of capacity k implies the existence of an sout− tin vertex
cut of cardinality k and vice-versa. Claim (A) is established exactly as above. Claim (B) is
established by first noticing that in any finite-capacity cut, the only edges crossing the cut
must be of the form (vin, vout); the set of all such v then constitutes the s− t vertex cut.

4.5 The König-Egervary Theorem

Recall that a matching in a graph is a collection of edges such that each vertex belongs to at
most one edge. A vertex cover of a graph is a vertex set A such that every edge has at least
one endpoint in A. Clearly the cardinality of a maximum matching cannot be greater than
the cardinality of a minimum vertex cover. (Every edge of the matching contains a distinct
element of the vertex cover.) The König-Egervary Theorem asserts that in bipartite graphs,
these two parameters are always equal.

Theorem 10 (König-Egervary). If G is a bipartite graph, the cardinality of a maximum
matching in G equals the cardinality of a minimum vertex cover in G.

Proof. The proof technique illustrates a very typical way of using network flow algorithms:
we make a bipartite graph into a flow network by attaching a “super-source” to one side and
a “super-sink” to the other side. Specifically, if G is our bipartite graph, with two vertex
sets X, Y , and edge set E, then we define a flow network Ĝ = (X ∪ Y ∪ {s, t}, c, s, t) where
the following edge capacities are nonzero, and all other edge capacities are zero:

c(s, x) = 1 for all x ∈ X
c(y, t) = 1 for all y ∈ Y

c(x, y) =∞ for all (x, y) ∈ E

For any integer flow in this network, the amount of flow on any edge is either 0 or 1. The
set of edges (x, y) such that x ∈ X, y ∈ Y, f(x, y) = 1 constitutes a matching in G whose
cardinality is equal to |f |. Conversely, any matching in G gives rise to a flow in the obvious
way. Thus the maximum flow value equals the maximum matching cardinality.

If (S, T) is any finite-capacity s − t cut in this network, let A = (X ∩ T) ∪ (Y ∩ S).
The set A is a vertex cover in G, since an edge (x, y) ∈ E with no endpoint in A would
imply that x ∈ S, y ∈ T, c(x, y) =∞ contradicting the finiteness of c(S, T). The capacity of
the cut is equal to the number of edges from s to T plus the number of edges from S to t
(no other edges from S to T exist, since they would have infinite capacity), and this sum is
clearly equal to |A|. Conversely, a vertex cover A gives rise to an s − t cut via the reverse
transformation, and the cut capacity is |A|.

4.6 Hall’s Theorem

Theorem 11. Let G be a bipartite graph with vertex sets X, Y and edge set E. Assume
|X| = |Y |. For any W ⊆ X, let Γ(W) denote the set of all y ∈ Y such that (w, y) ∈ E for at

13

least one w ∈ W . In order for G to contain a perfect matching, it is necessary and sufficient
that each W ⊆ X satisfies |Γ(W)| ≥ |W |.

Proof. The stated condition is clearly necessary. To prove it is sufficient, assume that
|Γ(W)| ≥ |W | for all W . Transform G into a flow network Ĝ as in the proof of the König-
Egervary Theorem. If there is a integer flow of value |X| in Ĝ, then the edges (x, y) such that
x ∈ X, y ∈ Y, f(x, y) = 1 constitute a perfect matching in G and we are done. Otherwise,
there is a cut (S, T) of capacity k < n. We know that

|X ∩ T |+ |Y ∩ S| = k < n = |X ∩ T |+ |X ∩ S|

from which it follows that |Y ∩ S| < |X ∩ S|. Let W = X ∩ S. The set Γ(W) is contained
in Y ∩ S, as otherwise there would be an infinite-capacity edge crossing from S to T . Thus,
|Γ(W)| ≤ |Y ∩S| < |W |, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.

4.7 Dilworth’s Theorem

In a directed acyclic graph G, let us say that a pair of vertices v, w are incomparable if there
is no path passing through both v and w, and define an antichain to be a set of pairwise
incomparable vertices.

Theorem 12. In any finite directed acyclic graph G, the maximum cardinality of an an-
tichain equals the minimum number of paths required to cover the vertex set of G.

The proof is much trickier than the others. Before presenting it, it is helpful to introduce
a directed graph G∗ called the transitive closure of G. This has same vertex set V , and its
edge set E∗ consists of all ordered pairs (v, w) such that v 6= w and there exists a path in
G from v to w. Some basic facts about the transitive closure are detailed in the following
lemma.

Lemma 13. If G is a directed acyclic graph, then its transitive closure G∗ is also acyclic. A
vertex set A constitutes an independent set in G∗ (i.e. no edge in E∗ has both endpoints in
S) if and only if A is an antichain in G. A sequence of vertices v0, v1, . . . , vk constitutes a
path in G∗ if and only if it is a subsequence of a path in G. For all k, G∗ can be partitioned
into k or fewer paths if and only if G can be covered by k or fewer paths.

Proof. The equivalence of antichains in G and independent sets in G∗ is a direct consequence
of the definitions. If v0, . . . , vk is a directed walk in G∗ — i.e., a sequence of vertices such
that (vi−1, vi) is an edge for each i = 1, . . . , k — then there exist paths Pi from vi−1 to vi
in G, for each i. The concatenation of these paths is a directed walk in G, which must be
a simple path (no repeated vertices) since G is acyclic. This establishes that v0, . . . , vk is
a subsequence of a path in G, as claimed, and it also establishes that v0 6= vk, hence G∗

contains no directed cycles, as claimed. Finally, if G∗ is partitioned into k paths then we
may apply this construction to each of them, obtaining k paths that cover G. Conversely,
given k paths P1, . . . , Pk that cover G, then G∗ can be partitioned into paths P ∗1 , . . . , P

∗
k

where P ∗i is the subsequence of Pi consisting of all vertices that do not belong to the union
of P1, . . . , Pi−1.

14

Using these facts about the transitive closure, we may now prove Dilworth’s Theorem.

Proof of Theorem 12. Define a flow network Ĝ = (W, c, s, t) as follows. The vertex set W
contains two special vertices s, t as well as two vertices xv, yv for every vertex v ∈ V (G). The
following edge capacities are nonzero, and all other edge capacities are zero.

c(s, xv) = 1 for all v ∈ V
c(xv, yw) =∞ for all (v, w) ∈ E∗

c(yw, t) = 1 for all w ∈ V

For any integer flow in the network, the amount of flow on any edge is either 0 or 1. Let
F denote the set of edges (v, w) ∈ E∗ such that f(xv, yw) = 1. The capacity and flow
conservation constraints enforce some degree constraints on F : every vertex of G∗ has at
most one incoming edge and at most one outgoing edge in F . In other words, F is a union
of disjoint paths and cycles. However, since G∗ is acyclic, F is simply a union of disjoint
paths in G∗. In fact, if a vertex doesn’t belong to any edge in F , we will describe it as a
path of length 0 and in this way we can regard F as a partition of the vertices of G∗ into
paths. Conversely, every partition of the vertices of G∗ into paths translates into a flow in
Ĝ in the obvious way: for every edge (v, w) belonging to one of the paths in the partition,
send one unit of flow on each of the edges (s, xv), (xv, yw), (yw, t).

The value of f equals the number of edges in F . Since F is a disjoint union of paths,
and the number of vertices in a path always exceeds the number of edges by 1, we know that
n = |F |+ p(F). Thus, if the maximum flow value in Ĝ equals k, then the minimum number
of paths in a path-partition of G∗ equals n − k, and Lemma 13 shows that this is also the
minimum number of paths in a path-covering of G. By max-flow min-cut, we also know that
the minimum cut capacity in Ĝ equals k, so to finish the proof, we must show that an s− t
cut of capacity k in Ĝ implies an antichain in G — or equivalently (again using Lemma 13)
an independent set in G∗ — of cardinality n− k.

Let S, T be an s− t cut of capacity k in Ĝ. Define a set of vertices A in G∗ by specifying
that v ∈ A if xv ∈ S and yv ∈ T . If a vertex v does not belong to A then at least one of
the edges (s, xv) or (yv, t) crosses from S to T , and hence there are at most k such vertices.
Thus |A| ≥ n−k. Furthermore, there is no edge in G∗ between elements of A: if (v, w) were
any such edge, then (v, w′) would be an infinite-capacity edge of Ĝ crossing from S to T .
Hence there is no path in G between any two elements of A, i.e. A is an antichain.

15

	Dinitz's Algorithm
	The Hopcroft-Karp Algorithm
	The Push-Relabel Algorithm
	Some combinatorial applications of maximum flow
	An application of flow integrality to discrepancy minimization
	Combinatorial applications of the max-flow min-cut theorem
	Preliminaries
	Menger's Theorem
	The König-Egervary Theorem
	Hall's Theorem
	Dilworth's Theorem

