Analysis of Algorithms Problem Set 5
CS 6820 Fall 2014 Due 5pm, Wednesday, December 5, 2014

This problem set has 5 problems with parts of varying difficulty. For full credit for
a grade of A, solve four of the five problems. A full solution for each problem includes
proving that your answer is correct. If your group cannot solve a problem, but can do
some parts, or have partial results, write down how far you got, and why are you stuck.
This problem set contains asks you to prove some problems NP-complete. To do this,
you may use that any of the following problems are NP-complete: Vertex Cover, SAT,
0/1 integer programming, Circuit Satisfiability, 3D-Matching, and Hamiltonian Circuit
(of these we didn’t cover Hamiltonian Circuit in class, but the NP-completeness proof
is in both of our recommended books).

Students may work on homework in groups of up to 2-3 people. Each group may turn
in a single solution set that applies to all members of the group. However, students are
asked to understand each of their group’s solutions well enough to give an impromptu
whiteboard presentation of the solution. You may use any fact we proved in class without
proving the proof or reference, and may read the relevant chapters of the Kleinberg-
Tardos or Kozen books, provided you state them clearly. However, you may not use
other published papers, or the Web to find your answer.

Solutions can be submitted on CMS in pdf format (only). Please type your solution
or write extremely neatly to make it easy to read. If your solution is complex, say
more than about half a page, please include a 3-line summary to help us understand the
argument.

Please ask any clarifying questions using Piazza, where we will post all answers.

(1) Prove that the directed disjoint path problem is NP-complete. The problem is as
follows. Input is a directed graph G and k pairs of nodes s; and ¢; for i = 1,..., k. The
problem is to decide if there are a node-disjoint paths P; so that path P; goes from s; to
t;. Hint: Consider using SAT in your proof. Start with an s — ¢ pair for each variable
with two separate paths between each pair, thinking of one path as representing setting
the variable “true”, the other path as setting the variable ”false”. Now add further s —¢
pairs to make sure that disjoint paths will be corresponding to a satisfying assignment
of the SAT problem.

(2) The Multi-Cut problem is given by a undirected graph G = (V, E) with nonnega-
tive capacities ¢, > 0 on the edges e € E and k pairs of nodes (s1,t1), (S2,%2), - -, (Sk, k),
and a threshold value 7. The problem is to decide if there is a subset F' of the edges F
of total capacity at most v, that is > .cp c. < 7, such that each given pairs s; and ¢; is
in separate components after deleting F'. Note that the special case, when k = 1 is the
traditional (s,¢) min-cut problem.

Show that the Multi-Cut Problem is NP-complete even when G is a tree. Hint: try



very simple kinds of trees.

(3) Construct the edge probabilities for a three state Markov chain where each pair
of states is connected by an edge so that the stationary probability is %, %% Recall that
a Markov chain is given by matrix P of transition probabilities p;; for i,j € {1,2,3},
where p;; is the probability that in state ¢ the Markov chain goes to state j, so we must
have 37, p;; = 1. A probability distribution ¢ on the states is stationary of ¢P = ¢q. Can

you make the matrix symmetric? if you cannot, explain why not.

(4) For an undirected graph G with n vertices and m edges, recall that the Laplacian
matrix is an n by n matrix L where the diagonal entry [;; is the degree of node i in G,
and the entry [;; is -1 if (4, 5) is an edge of the graph and 0 otherwise. Also recall that
this symmetric matrix is guaranteed to have all nonnegative eigenvalues with 0 as the
smallest one (with the eigenvector of the all 1 vector). Let

0= M(G) € M(G) < .., \(G)

be the set of eigenvalues of this matrix. Define a random induced subgraph of G to be
a graph obtained by the following random sampling procedure: We include each vertex
in the sample independently with probability 1/2, and then let H be the subgraph of G
consisting of the selected vertices together with all the edges of G' that have both their
endpoints selected.

Prove or disprove that there exist constants ny < oo and & > 0 such that for ev-
ery connected undirected graph G with at least ng vertices, if H is a random induced
subgraph of G, then

PrOw(H) > JXa(G)) > 6.

To make Ao (H) well-defined for all H, we adopt the convention that Ao(H) = 0 when
H has fewer than two vertices.

(5) In class we have seen a randomized algorithm to test if a number is prime.
Suppose you run a version of the algorithm that makes a mistake with probability
= 1/2k. So given a number n as input, if n is prime, the algorithm returns “probably
prime” with probability at least (1 — ¢§), and if n is not prime, the algorithm returns
“probably not prime” with probability at least (1 — §).
For cryptographic applications we often need large random primes. The way to find
a random n digit primes is to test random numbers with n digits for being prime. A
useful fact here is that the probability that a random 7 digit number is prime is ¢/n for
some constant c¢. So the algorithm is as follows.

While algorithm returns “probably not prime”
Let N be random n digit number
Run algorithm to test if N is a prime



endwhile
return N

(a) Suppose we run a version of the prime testing algorithm from that make a mistake
with probability at most 6 = 0.1% = 0.001. What is the probability that the
number N returned is prime? What ¢ do you have to use to make the provability
that number returned is prime at least 99% (express your choice as § as a function
of n). If O(T'(n)) is the running time of a single run of our prime testing algorithm
(computing a™1/2 mod N), what is the running time of the version of the above
algorithm to find an n digit number that is prime with probability at least 99%?7

Consider a generic randomized algorithm that makes a mistake with probability ¢.
Suppose the algorithm is deciding a yes/no question, and can return the wrong answer
with probability 1/3.

(b) If we run this randomized algorithm k& times (with independent random choices) we
expect to get the correct answer in at least 2/3rd of the runs. Give a bound (using
Chernoff bound) of the probability that the majority answer is wrong (i.e., that
for an input N that is not prime, the majority of the runs will return “probably
prime” or vica versa). How high a value k will guarantee that the probability of a
wrong answer is at most 0 for a small § > 07 (express your answer as a function
of log 3).



