
Analysis of Algorithms Problem Set 3
CS 6820 Fall 2014 Due 5pm, Friday, October 10, 2014

This problem set has 4 problems with parts of varying difficulty. I have assigned points
to each part, with a maximum possible total of 110. For full credit for a grade of A, solve
enough parts to collect at least 80 points (OK to solve the easier parts of each problem). A
full solution for each problem includes proving that your answer is correct. If your group
cannot solve a problem, but can do some parts, or have partial results, write down how far
you got, and why are you stuck.

Students may work on homework in groups of up to 2-3 people. Each group may turn in
a single solution set that applies to all members of the group. However, students are asked
to understand each of their group’s solutions well enough to give an impromptu whiteboard
presentation of the solution. You may use any fact we proved in class without proving the
proof or reference, and may read the relevant chapters of the Kleinberg-Tardos or Kozen
books, provided you state them clearly. However, you may not use other published
papers, or the Web to find your answer.

Solutions can be submitted on CMS in pdf format (only). Please type your solution or
write extremely neatly to make it easy to read. If your solution is complex, say more than
about half a page, please include a 3-line summary to help us understand the argument.

Please ask any clarifying questions using Piazza, where we will post all answers.

(1) (30 points) We defined flow in class using a formulation using flow conservation. An
alternate way to define flow is to think about path from s to t, and how much flow they
each carry. This problem will show that the two versions are essentially equivalent. Here is
how that version would be defined. A path P from s to t can carry flow from s to t. Let
P denote the set of all s-t paths in G. For this problem, we define a path-flow by a value
fP ≥ 0 for each path P ∈ P , which we think of as the amount of flow the path carries. Now
the total value of the flow is

v(f) =
∑
P∈P

fP ,

and the capacity constraint is written as∑
P∈P:e∈P

fP ≤ ce for all e ∈ E.

The problem then is to find a path-flow of values fP ≥ 0 for P ∈ P that satisfy the capacity
constraint and maximize the value v(f).

(a) (3 points) Show that for any path-flow f , the following

f ′(e) =
∑

P∈P,e∈P
fP

defines a (traditional) flow of equal value in G.



(b) (12 points) Show that for any (traditional) flow f ′ there is a path-flow f of equal value
(v(f) = v(f ′)) such that the flow on each edge e in the f flow is no higher than the
flow in f ′, that is,

∑
P∈P:e∈P fP ≤ f ′(e). Is this also true with equal instead of the

inequality?

(c) (7 points) One trouble with path-flows is that there can be exponentially many s-t
paths in G. Given a flow f ′ give a polynomial time algorithm to create a path-flow
f as defined in (b), where your flow uses only polynomial many paths to carry the
flow. Your algorithm should output the list of paths P with their value fP > 0, and
implicitly define fP = 0 for all paths not on the list.

(d) (8 points) Make the algorithm for (c) run in O(mn) time, where m and n denote the
number of edges and nodes respectively.

(2) (20 points) In class we talked about the preflow/push max-flow algorithm. Here
we consider a version that stops early yet finds the min-cut. One of the invariants of the
algorithm was that there is no path from s to t in the residual graph, this means that the
cut B = {v : there is a path from v to t in the residual graph}, and A = V \ B, forms an
(s, t) cut, with s ∈ A and t ∈ B.

(a) (5 points) Show that the capacity of the (A,B) cut,
∑

e∈(A,B) ce is always equal to∑
v∈B ef (v), that is, its the flow delivered to t, plus the amount of excess on the B side

of the cut.

(b) (10 points) Consider running the maxflow algorithm with limiting all nodes to height
at most n = |V |. So this version of the algorithm terminates when all nodes with
excess have height n. Clearly, at this point, we may not have a valid flow. However,
prove that the cut (A,B) defined above is the min-capacity (s, t) cut in the graph.

(c) (5 points) Consider the state of the preflow/push algorithm from part (b). Note that
the remaining of the algorithm will take the excess at the nodes (all of height n), and
push them back to the source. This can be done much faster not using preflow/push.
Use part (d) of the previous question to solve this in O(mn) time, where m and n
denote the number of edges and nodes respectively. (OK to use (1d), even if you
didn’t solve the (d) part of the previous question).

(3) (40 points) Many of the most powerful applications of flow algorithms are for finding
(s, t) cuts, and not flows. In the application we have seen, a serious limitation is that there
are only two terminals s and t (which limited us to forground/background segmentation).
Here we consider a three terminal version of the problem. You are given an undirected graph
G = (V,E) with costs/capacities ce on the edges, and three nodes s1, s2, s3 ∈ V . A 3-way
cut is a partition of the nodes into three sets (A1, A2, A3) such that si ∈ Ai. We say that an
edge e = (v, w) is cut by the partition if v and w are not in the same parts of the partition.
We will consider two versions of the problem.



(a) (8 points) As a useful first step consider a regular min-cut problem with only two
terminals s and t. Show that there is an (s, t) min-cut (A,B) that is minimal in the
sense that all other (s, t) min-cuts (A′, B′) satisfy A ⊂ A′. Give a polynomial time
algorithm to find such a cut (A,B).

(b) (8 points) Suppose we consider the following algorithm for finding a 3-way partition:
for each terminal si, consider the max-flow problem with si as the source, and the two
other terminals contracted to a single node ti as the sink, and let (Ai, Bi) the minimal
min-cut in the graph in the sense of (a). Show that the sets Ai must be disjoint. Hint:
it seems useful to consider the cuts defined by sets Ai \ Aj and Aj \ Ai and consider
how the the capacities of the pairs of cuts c(Ai) + c(Aj) and c(Ai \Aj) + c(Aj \Ai) are
related.

(c) (8 points) Consider the following algorithm for finding a low-cost 3-way cut: Find the
sets Ai as given in part (a). Output the 3-way cut where Ai is the part assigned to
terminal si. As defined, this is not a 3-way cut, as there may be nodes in V \ ∪iAi.
Show that the total cost of this partition is at most twice the cost of any 3-way cut.
(Note that finding the exact minimum capacity 3-way cut is NP-hard, so its interesting
to resort to approximations.)

(d) (6 points) Note that you can turn this into a 3-way cut, we propose that you assign
these nodes to any of the three parts (all of them to the same part). Show that this
doesn’t increasing the cost of the partition, and in fact, can improve the guarantee
claimed by part (c).

(e) (10 points) Can you extend parts (a-c) to multiway cuts with k terminals (and not
only 3).

(4) (20 points) The linear programming (LP) containment problem is the following de-
cision problem. We are given matrices A0 and A1 and vectors b0 and b1, and we must decide
if the relation

{x : A0x ≤ b0} ⊆ {x : A1x ≤ b1}

holds. You should assume that A0 and b0 have the same number of rows, that A1 and b1
also have the same number of rows, and that A0 and A1 have the same number of columns,
as these assumptions are needed in order for the notation in the problem definition to even
make sense. You may also assume that the entries of A0;A1; b0; b1 are integers. Give a
polynomial-time algorithm to solve the LP containment problem. You can assume that your
algorithm has access to a subroutine that solves linear programs of size N in time t(N),
where t(N) is polynomial in N . When analyzing the running time of your own algorithm,
you may express it in terms of t(N). In other words, don’t worry about the precise running
time of the subroutine to solve linear programs, just worry about how many times your
algorithm calls the subroutine, and how much time it spends on other operations.


