
Analysis of Algorithms Problem Set 2
CS 6820 Fall 2014 Due 5pm, Monday, September 29, 2014

This problem set has 5 problems with parts of varying difficulty. For full credit for a
grade of A, solve at least 4 of the 5 problems. A full solution for each problem includes
proving that your answer is correct. If your group cannot solve a problem, but can do some
parts, or have partial results, write down how far you got, and why are you stuck.

Students may work on homework in groups of up to 2-3 people. Each group may turn in
a single solution set that applies to all members of the group. However, students are asked
to understand each of their group’s solutions well enough to give an impromptu whiteboard
presentation of the solution. You may use any fact we proved in class without proving the
proof or reference, and may read the relevant chapters of the Kleinberg-Tardos or Kozen
books, provided you state them clearly. However, you may not use other published
papers, or the Web to find your answer.

Solutions can be submitted on CMS in pdf format (only). Please type your solution or
write extremely neatly to make it easy to read. If your solution is complex, say more than
about half a page, please include a 3-line summary to help us understand the argument.

Please ask any clarifying questions using Piazza, where we will post all answers.

(1) Assume G = (V,E) is a bipartite graph, and you want to find a large matching
in G. Recall that the greedy algorithm finds a matching of size at least 1/2 of the size of
maximum matching. We say that the greedy algorithm is a 2-approximation algorithm for
this problem. Suppose you take a maximal matching M (resulting from a run of the greedy
algorithm), and try find a set of disjoint augmenting paths. In this question, you are asked to
determine if the proposed 2-round greedy algorithm described below is guaranteed to result
in a significant improvement, i.e. is a c-approximation for some c < 2.

(a) Greedily add edges to a matching M till no more edges can be added.

(b) Set up the directed graph RM whose s-t paths correspond to augmenting paths, and
greedily find a maximal set of disjoint length-5 augmenting paths. So if the s to t
distance in G is greater than 5, the algorithm does nothing; if the distance is 5, it runs
a single iteration of the Hopcroft-Karp algorithm. (Note that the distance cannot be
smaller than 5, as the distance is always odd, and a length 3 path is just an edge that
can be added to matching M , contradicting our assumption that M was maximal.)

(2) Consider the bipartite matching problem on a bipartite graph G = (V,E). As usual,
we say that V is partitioned into sets X and Y , and each edge has one end in X and the
other in Y . Interpret the left-hand vertex set Y as a set of cellphone-using customers that all
want to connect to some cell tower, and the right-hand side X as a set of possible connection
points. This being a matching problem, each connection point can only accommodate one

customer. A subset of nodes in A ⊂ Y can be served if and only if there is a matching M so
that M matches all the nodes in A to nodes in X.

x1

x2

y1

y2

y3

y4

y5

Figure 1: An instance of the Coverage Problem.

For example, in the bipartite graph on the figure, {y1, y4} can be served, but {y1, y2}
can’t. A single node {y} can be served if and only if it is adjacent to some edge.

Now, suppose the customers have signed up for different service levels of increasing cost,
so that each customer y ∈ Y pays cy units of money. The company is thinking about
options for how to phrase their service agreement. You are asked to evaluate, for each of two
proposals, whether it hurts the overall profit. Suppose you select a subset A of customers
that can be assigned to cell tower connection points, with total profit P =

∑
y∈A cy. For

each option, determine whether you can always select the set A of customers to serve that
maximizes the profit while not violating the service agreement.

(I) “Never deny service to someone when you are serving anyone in a lower service level”
If two customers yi and yj have cyi < cyj , you may not serve yi unless you also serve
yj (but among customers with equal cy values, you may serve any subset).

(II) “Never serve someone when you could serve someone in a higher service level instead”
If two customers yi and yj have cyi < cyj , and you serve a set A such that yi ∈ A
and yj 6∈ A, then serving A′ = A − yi + yj must not be possible (that is, there is no
matching that matches all the nodes in A′).

(3) Suppose we are given a directed network G = (V,E) with a root node r and a set of
terminals T ⊆ V . We’d like to disconnect many terminals from r, while cutting relatively
few edges.

We can make this trade-off precise as follows: For a set of edges F ⊆ E, let q(F) denote
the number of nodes v ∈ T such that there is no r-v path in the subgraph (V,E−F). Give a
polynomial-time algorithm to find a set F of edges that maximizes the quantity q(F)− |F |.
(Note that setting F equal to the empty set is an option.)

(4) Some of your friends with jobs out West decide to carpool to work. Unfortunately,
they all hate to drive, so they want to make sure that any carpool arrangement they agree
upon is fair, and doesn’t overload any individual with too much driving. Some sort of simple
round-robin scheme is out, because no one of them goes to work every single day, and so
the subset of them in the car varies from day to day. Here’s one way to define fairness: Let
the people be labeled S = {p1, ..., pk}. We say that the total driving obligation of pj over
a set of days is the expected number of times that pj would have driven, had a driver been
chosen uniformly at random from among the people going to work each day. More concretely,
suppose the carpool plan lasts for d days, and on the ith day a subset Si ⊂ S of the people
will be going to work. Then, the above definition of the total driving obligation ∆j for pj
can be written as ∆j =

∑
i:pj∈Si

1
|Si| . Ideally, we would like to require that pj drives at most

∆j times; unfortunately, ∆j may not be an integer. So let’s say that a driving schedule, a
choice of a driver for each day, is fair if each pj is chosen as the driver on at most d∆je days,
i.e., < ∆j + 1 days.

(a) Prove that for any sequence of sets S1, . . . , Sd, there exists a fair driving schedule.

• Give an algorithm to compute a fair driving schedule in time polynomial in k and d.

(5) We have seen a minimum cost perfect matching algorithm that repeatedly augments
along min-cost augmenting paths starting from an empty matching. Suppose you terminate
the algorithm after k iterations. At that point, the matching M has k edges. Is this matching
M the minimum-cost one among all matchings containing k edges? Prove that it is or give
a counterexample.

