CS 682 (Spring 2001) - Solutions to Assignment 6

(1) DEF: Let $A \subseteq \Sigma^*$ and $B \subseteq \Gamma^*$. We say that A is recursive in B iff there exists a total TM M such that

$$A = L(M^B).$$

Prove that $\{M_i|M_i(-) \uparrow\}$ is recursive in

$$MING = \{G_i | (\forall j)(j < i \rightarrow G_i \not\equiv G_j)\}.$$

For extra credit show that MING is or is not an \leq_m -r.e. complete set.

Proof. First, notice that minimization of context-free grammars is recursive in MING. To minimize a given CFG G_i :

- 1. Check whether $G_i \in MING$. If this is the case, we are done.
- 2. If not, make a list of all minimal G_j with j < i. This is easily done by querying MING with each G_j with j < i.
- 3. Simultaneously, search for disagreements between $L(G_i)$ and $L(G_j)$ for every G_j on the list, until the search terminates for all but one G_j . This will happen, since exactly one grammar on the list is equivalent to G_i , and that is the minimized grammar of G_i .
- 4. Return G_j .

From this it follows that equivalence of context-free grammars is also recursive in MING. Given CFGs G_i, G_j , minimize both to G'_i, G'_j . Then $G_i \equiv G_j$ iff $G'_i = G'_j$.

Now we're ready to decide $\Delta = \{M_i | M_i(\epsilon) \uparrow\}$ (with oracle MING). Let f, g be recursive such that $M_{f(i)}(x)$ simulates $M_i(x)$ if $x = \epsilon$, accepting if M_i halts, and rejects x otherwise, and such that $L(G_{g(i)}) = \overline{\text{VALCOM}(M_i)}$. Let G_T be a grammar such that $L(G_T) = \Sigma^*$. Then

$$M_i \in \Delta \iff M_i(\epsilon) \uparrow \iff \epsilon \notin L(M_{f(i)}) \iff L(M_{f(i)}) = \emptyset \iff VALCOM(M_{f(i)}) = \emptyset \iff L(G_{g(f(i))}) = \Sigma^* \iff G_{g(f(i))} \equiv G_T$$

and the latter is recursive in MING.

(2) DEF: A set $C \subseteq \Sigma^*$ is *sparse* iff there is a k such that for all n

$$|\{x||x| \le n \text{ and } x \in C\}| \le n^k + k.$$

Prove that there are no sparse complete sets, under \leq_m^p -reductions, for

$$\text{EXSPACE} = \bigcup_{k>1} \text{SPACE} \left[2^{n^k} \right].$$

Proof. Let S be a sparse set, k such that $|\{x||x| \le n \text{ and } x \in S\}| \le n^k + k$. We show that S is not EXSPACE-complete by constructing an EXSPACE machine M such that L(M) is not poly-time reducible to S.

Let D_l be the l-th poly-time machine, p_l be the polynomial bound on the runtime of D_l . It is safe to assume that both can be computed in SPACE[2^l]. Let M do the following on input x of length n:

- 1. Set a bounded working tape of length 2^n .
- 2. If x is not of the form l#y, reject x.
- 3. Compute $w = D_l(x)$.
- 4. For each string $l\#z <_{\text{lex}} x$ of length n, compute $D_l(l\#z)$. If one of the values is w reject x, otherwise accept.
- 5. If at any time during steps 2-4 the tape runs out, reject x.

Notice that for x = l # y of length n, completion of steps 2,3,4 would need at most $C \cdot p_l(n)$ space, since the result of D_l on strings of length n is not longer than $p_l(n)$. The algorithm needs $p_l(n)$ space to remember w, $p_l(n)$ more to simulate D_l on the other strings, one at a time, and little more for bookkeeping. C = 17 should be more than enough.

First, L(M) is in SPACE[2ⁿ] by construction (steps 1 and 5), therefore in EXSPACE. Now, for a given D_l let n be such that

$$2^n > C \cdot p_l(n)$$
 and $|\Sigma|^{n-l-1} > (p_l(n))^k + k$.

All large enough n would clearly do. Note that on any x of length n, M would complete its computation, without running out of tape, because of the left inequality.

There are two cases:

- Case 1. D_l is 1-1 on the set $A = \{l \# z | |z| = n l 1\}$. In that case, M will accept all strings in A, since step 4 would never yield a matching value. However, D_l maps A to a set of $|\Sigma|^{n-l-1}$ strings of length at most $p_l(n)$. Since S has, at most, only $(p_l(n))^k + k$ many strings of that length (less by the right inequality above), for some string $u \in A \subseteq L(M)$ it must be the case that $D_l(u) \notin S$. Therefore D_l cannot reduce L(M) to S.
- Case 2. D_l is not 1-1 on A. Then there is a string w and a subset $B \subseteq A$ of cardinality > 1 such that $D_l(u) = w$ iff $u \in B$. Let u_0 be the $<_{lex}$ -least element of B, u_1 be another element of B, different from u_0 . M accepts u_0 because $D_l(u) \neq w$ for every $u <_{lex} u_0$ in A. M rejects u_1 because $D_l(u_0) = w$ and $u_0 <_{lex} u_1$. Since $u_0 \in L(M)$ and $u_1 \notin L(M)$ are mapped by D_l to the same string w, D_l cannot reduce L(M) to anything, and to S in particular.

Since by the above no D_l reduces $L(M) \in \text{EXSPACE}$ to S, S is not EXSPACE-complete.