CS 682 (Spring 2001) - Solutions to Assignment 2

(1) Show that there exists a TM M_i such that

$$L(M_i) = \{M_i\}.$$

Proof. Let f be recursive such that $M_{f(i)}$ is a machine that accepts M_i alone. Such a machine is clearly computable in a uniform way. By the recursion theorem, there is some i_0 such that

$$L(M_{i_0}) = L(M_{f(i_0)}) = \{M_{i_0}\}.$$

(2) Let \mathcal{L}_i denote linearly-bounded automata. Show that

$$\{\mathcal{L}_i|L(\mathcal{L}_i)\neq\Sigma^*\}$$

is an r.e. complete set.

Proof. Denote the set by Δ . It is enough to construct a many-one reduction of a known r.e. complete set to Δ , but we can easily construct a many-one reduction from any r.e. set L(M) to Δ as follows:

Let f be recursive such that f(x) is the LBA \mathcal{L}^x that rejects an input y iff $y \in VAL(M)$ and the first configuration in y has x as the tape content.

(3) Show that

- a) $\{\mathcal{L}_i | L(\mathcal{L}_i) \text{ is cofinite}\} \equiv_m \{M_i | L(M_i) \text{ is finite}\}$
- b) $\{\mathcal{L}_i|L(\mathcal{L}_i) \text{ is not regular}\}\equiv_m \{M_i|L(M_i) \text{ is infinite}\}.$

Proof.

a) For the left-to-right reduction, let f be recursive such that $M_{f(i)}$ simulates \mathcal{L}_i and accepts iff \mathcal{L}_i rejects, so that $L(M_{f(i)}) = \overline{L(\mathcal{L}_i)}$. Clearly

$$L(\mathcal{L}_i)$$
 is cofinite \iff $L(M_{f(i)})$ is finite.

For the right-to-left reduction, let f be recursive such that $\mathcal{L}_{f(i)}$ accepts y iff y is not a valid computation of M_i , so that $L(\mathcal{L}_{f(i)}) = \overline{\mathrm{VAL}(M_i)}$. Clearly

$$L(M_i)$$
 is finite \iff $L(\mathcal{L}_{f(i)})$ is cofinite.

b) For the left-to-right reduction, let f be recursive such that $M_{f(i)}$ accepts x iff for all $j \leq x$, $L(A_j) \neq L(\mathcal{L}_i)$: for each $j \leq x$, it simultaneously searches for a difference between the recursive sets $L(A_j)$ and $L(\mathcal{L}_i)$; if such differences are found for all $j \leq x$ it accepts x, and if not it does not halt (no choice here). Then

$$L(\mathcal{L}_i)$$
 is not regular \iff $\forall j \ L(A_j) \neq L(\mathcal{L}_i) \iff |L(M_{f(i)})| = \infty.$

For the right-to-left reduction, let f be recursive such that $\mathcal{L}_{f(i)}$ accepts VAL (M_i) . Then

$$|L(M_i)| = \infty$$
 \iff $L(\mathcal{L}_{f(i)})$ is not regular

since for any M, VAL(M) is regular iff it is finite (this is an easy consequence of the pumping lemma for regular languages).

- (4) Let $A = \{M_i | |L(M_i)| = 2\}$. Show that
 - a) $A \leq_m \{M_i | L(M_i) \text{ is finite}\}$
 - b) $A \leq_m \{M_i | L(M_i) \text{ is infinite} \}.$

Proof.

a) Let f be recursive such that $M_{f(i)}$ rejects x iff exactly 2 strings are enumerated by the x-th step of the recursive enumeration of $L(M_i)$.

If $|L(M_i)| = 2$ then there is some x_0 such that both strings are enumerated after x_0 steps, and then $M_{f(i)}$ will reject every $x \ge x_0$ and therefore $L(M_{f(i)})$ is finite.

If $|L(M_i)| \neq 2$ then there is some x_0 such that for all $x > x_0$ the number of strings enumerated in x steps is not 2 (if $|L(M_i)| > 2$ let x_0 be the number of steps it takes to enumerate 3 strings, and if $|L(M_i)| < 2$ any x_0 will do). $M_{f(i)}$ will then accept all $x > x_0$, and therefore $L(M_{f(i)})$ is infinite.

b) Follow the same construction as in (a), but have $M_{f(i)}$ accept instead of reject and vice versa. The same proof (with the expected alterations) applies.