CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 2: September 3
Lecturer: Eshan Chattopadhyay Scribe: Renee Mirka

2.1 Introduction

Today’s lecture provided a proof of the Chernoff bound, a statement of Hoeffding’s bound, and a discussion
of randomness efficient ways of reducing errors in randomized algorithms.

2.2 Chernoff Bound

Theorem 2.1 Let Xy, Xo,..., X, be iid. {0,1} rv.s and X = Y ;" | X;. Let up = E[X]. Then for any
0<6<1, PrlX —p| > 6p) <2 exp(=42).

E[esX]

Proof: Recall by Markov’s inequality that for any ¢ > 0, Pr[esX > e%f] < pn
e

. Furthermore,

E[GSX] = Ele® s Xi] — E[H ein] _ HE[ein} — (]E[ele])n

=1 i=1

where the third and fourth equalities are true due to the independence and identical distribution, respectively,
of the X;. Now, let X; = 1 with probability p and X; = 0 with probability 1 — p for some p € [0,1]. Then
E[esX1] = pe* + (1 —p) = 1+p(e® —1) < exp(p(e® —1)) (using €Y > 1+ for all y € R). Substituting this into
< cxp(np(e’ — 1)) _ exp(p(e® — 1))

o5t = o5t sice

our initial bound from Markov’s inequality, we see PrlesX > e

p=E[X]=>Y" E[X;] = np by linearity of expectation. Now, let ¢ = (1 + §)u and s = log(1 + §). Since

no ) 1
> = sX > > < < = ‘ .
Pr[X > (1+9)u] = Pr[e®* > exp(s(1+ 0)u)], we see Pr[X > (14 )] < T o) <(1 n 5)1+6)

From this point, one can use exponential approximations and algebraic manipulations to match the formula
as stated. |

2.3 Hoeffding’s Bound
Let Xi,..., X, be independent r.v.s where X; is supported on [a;,b;] and X = Y7 | X;. Then for any ¢ > 0,

Pr(|X —E[X]| > 1] <2-exp (_2”1(2;—60)2)

2.4 Randomness Efficient Ways of Reducing Errors in Random-
ized Algorithms

We begin this discussion with a definition of pairwise (2-wise) independence.
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Definition 2.2 {X;,..., X,,} are 2-wise independent if for all i # j, X;, X; are independent random vari-
ables.

Example 2.3 Consider X1, X2, X5 € {0,1}. Let Pr[X; = 1] = Pr[X; = 0] = 1/2 and similarly for X,.
Let X3 = X1 ® Xo. Then, these random variables are 2-wise independent but not i.i.d.

2.4.1 Constructing 2-wise Independent r.v.s

First fix a finite field F), where p is prime, then sample a,b independently and uniformly on IF,. For each
i€40,...,p— 1} define X; = ai + b. Here '+’ is the field operation (mod p).

Claim 2.4 {X;}i—o, p—1 are 2-wise independent.

Proof: Note each X; is uniformly distributed on F,,. For i # j and any «, 5 € Fp, Pro [ X; = o, X; = 5] =
Pryplai +b = «, aj + b = f]. Solving algebraically, this is equal to Pr{a = %, b=p—aj] = p%. [ |
A noteworthy part of this construction, is that we were able to construct p 2-wise independent (on [p]) r.v.’s
using only 2[log p]| bits.

2.4.2 2-wise Independent r.v.s Needed to Reduce Error of Randomized Algo-
rithms

Now let L € BPP be a language, x € L and A an algorithm for L using r bits of randomness. We know
Prycto,13-[A(x,y) = 1] > 2/3, but we want to bound the probability even further to 1 —e. (We saw in last
class using i.i.d. iterations of A requires O(rlog(1/e€)) bits.)

Start by letting Y'1,..., Y™ be 2-wise independent r.v.s on F, where each Y is uniform on F, and n is a
parameter to be fixed later. Choose any p such that p > max{2",n}. Define Z; = A(z,Y?) (Z; € {0,1}) and
output the majority vote. Then Zi, ..., Z, are 2-wise independent and E[Z;] > 2/3. Therefore, Z =3 | Z;
implies E[Z] = > | E[Z;] > 2n. Denote the algorithm that repeats A n times using Y!,...,Y" by A’
Var(Z)
n2

Then Pr[A’ is wrong on z] = Pr[Z < n/2] < Pr[|Z — E[Z]| > n/10] < 100
and Chebychev’s inequality in the last step).

(using 2/3n —n/2 > n/10

Claim 2.5 Var(Z) =", Var(Z;)

Proof:
Var(Z) =E((Z - E[Z))*] = El(>_(Z: — ElZ)))*]
i=1
= ZE[(Zi - E[Z:])%] +2 Z(E[(Zz' —E[Z:)]El(Z; — E[Z;])]) = Z Var(Z;)
since E[(Z; — E[Zi])] = 0. [ ]
Continuing from where we left off before the claim, Pr[A’ is wrong on z] < 100 Var(Z) < 100VL(Z1).

2 n
Furthermore, Var(Z;) = p- (1 — p) < 2/9, so Pr[A’ is wrong on x] = O(1/n). Choose n = O(1/¢) for the
desired bound.
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2.4.3 Error Reduction Table (2/3 — (1 —¢))

Let A be an algorithm for L € BPP using R bits of randomness and time 7.

Error Reduction Randomness Required Time Required
By i.i.d. Randomness | O(Rlog(1/¢)) O(T log(1/e))
By 2-wise Independent | 2- R+ 2log(1/e) + O(1) | O(T - 1/¢)
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