
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 2: September 3
Lecturer: Eshan Chattopadhyay Scribe: Renee Mirka

2.1 Introduction

Today’s lecture provided a proof of the Chernoff bound, a statement of Hoeffding’s bound, and a discussion
of randomness efficient ways of reducing errors in randomized algorithms.

2.2 Chernoff Bound

Theorem 2.1 Let X1, X2, . . . , Xn be i.i.d. {0, 1} r.v.s and X =
∑n
i=1Xi. Let µ = E[X]. Then for any

0 < δ < 1, Pr[|X − µ| > δµ] ≤ 2 · exp(−µδ
2

3 ).

Proof: Recall by Markov’s inequality that for any t ≥ 0, Pr[esX ≥ est] ≤ E[esX ]

est
. Furthermore,

E[esX ] = E[es
∑n

i=1Xi ] = E[

n∏
i=1

esXi ] =

n∏
i=1

E[esXi ] = (E[esX1 ])n

where the third and fourth equalities are true due to the independence and identical distribution, respectively,
of the Xi. Now, let X1 = 1 with probability p and X1 = 0 with probability 1− p for some p ∈ [0, 1]. Then
E[esX1 ] = pes+(1−p) = 1+p(es−1) ≤ exp(p(es−1)) (using ey ≥ 1+y for all y ∈ R). Substituting this into

our initial bound from Markov’s inequality, we see Pr[esX ≥ est] ≤ exp(np(es − 1))

est
=
exp(µ(es − 1))

est
since

µ = E[X] =
∑n
i=1 E[Xi] = np by linearity of expectation. Now, let t = (1 + δ)µ and s = log(1 + δ). Since

Pr[X ≥ (1 + δ)µ] = Pr[esX ≥ exp(s(1 + δ)µ)], we see Pr[X ≥ (1 + δ)µ] ≤ eµδ

(1 + δ)(1+δ)µ
=

(
eδ

(1 + δ)1+δ

)µ
.

From this point, one can use exponential approximations and algebraic manipulations to match the formula
as stated.

2.3 Hoeffding’s Bound

Let X1, . . . , Xn be independent r.v.s where Xi is supported on [ai, bi] and X =
∑n
i=1Xi. Then for any t > 0,

Pr[|X − E[X]| > t] ≤ 2 · exp
(
− 2t2∑n

i=1(bi − ai)2

)
.

2.4 Randomness Efficient Ways of Reducing Errors in Random-
ized Algorithms

We begin this discussion with a definition of pairwise (2-wise) independence.
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Definition 2.2 {X1, . . . , Xn} are 2-wise independent if for all i 6= j, Xi, Xj are independent random vari-
ables.

Example 2.3 Consider X1, X2, X3 ∈ {0, 1}. Let Pr[X1 = 1] = Pr[X1 = 0] = 1/2 and similarly for X2.
Let X3 = X1 ⊕X2. Then, these random variables are 2-wise independent but not i.i.d.

2.4.1 Constructing 2-wise Independent r.v.s

First fix a finite field Fp where p is prime, then sample a, b independently and uniformly on Fp. For each
i ∈ {0, . . . , p− 1} define Xi = ai+ b. Here ′+′ is the field operation (mod p).

Claim 2.4 {Xi}i=0,...,p−1 are 2-wise independent.

Proof: Note each Xi is uniformly distributed on Fp. For i 6= j and any α, β ∈ Fp, Pra,b[Xi = α, Xj = β] =

Pra,b[ai+ b = α, aj + b = β]. Solving algebraically, this is equal to Pr[a = α−β
i=j , b = β − aj] = 1

p2 .

A noteworthy part of this construction, is that we were able to construct p 2-wise independent (on [p]) r.v.’s
using only 2dlog pe bits.

2.4.2 2-wise Independent r.v.s Needed to Reduce Error of Randomized Algo-
rithms

Now let L ∈ BPP be a language, x ∈ L and A an algorithm for L using r bits of randomness. We know
Pry∈{0,1}r [A(x, y) = 1] ≥ 2/3, but we want to bound the probability even further to 1− ε. (We saw in last
class using i.i.d. iterations of A requires O(r log(1/ε)) bits.)

Start by letting Y 1, . . . , Y n be 2-wise independent r.v.s on Fp where each Y i is uniform on Fp and n is a
parameter to be fixed later. Choose any p such that p > max{2r, n}. Define Zi = A(x, Y i) (Zi ∈ {0, 1}) and
output the majority vote. Then Z1, . . . , Zn are 2-wise independent and E[Zi] ≥ 2/3. Therefore, Z =

∑n
i=1 Zi

implies E[Z] =
∑n
i=1 E[Zi] ≥ 2

3n. Denote the algorithm that repeats A n times using Y 1, . . . , Y n by A′.

Then Pr[A′ is wrong on x] = Pr[Z ≤ n/2] ≤ Pr[|Z −E[Z]| > n/10] ≤ 100
V ar(Z)

n2
(using 2/3n−n/2 > n/10

and Chebychev’s inequality in the last step).

Claim 2.5 V ar(Z) =
∑n
i=1 V ar(Zi)

Proof:

V ar(Z) = E[(Z − E[Z])2] = E[(

n∑
i=1

(Zi − E[Zi]))
2]

=

n∑
i=1

E[(Zi − E[Zi])
2] + 2

∑
i<j

(E[(Zi − E[Zi])]E[(Zj − E[Zj ])]) =

n∑
i=1

V ar(Zi)

since E[(Zi − E[Zi])] = 0.

Continuing from where we left off before the claim, Pr[A′ is wrong on x] ≤ 100
V ar(Z)

n2
≤ 100

V ar(Z1)

n
.

Furthermore, V ar(Z1) = µ · (1 − µ) ≤ 2/9, so Pr[A′ is wrong on x] = O(1/n). Choose n = O(1/ε) for the
desired bound.
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2.4.3 Error Reduction Table (2/3→ (1− ε))

Let A be an algorithm for L ∈ BPP using R bits of randomness and time T .

Error Reduction Randomness Required Time Required
By i.i.d. Randomness O(R log(1/ε)) O(T log(1/ε))
By 2-wise Independent 2 ·R+ 2 log(1/ε) +O(1) O(T · 1/ε)
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