
CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 14: October 17
Lecturer: Eshan Chattopadhyay Scribe: Ke Wu

14.1 Preliminary and Notation

Definition 14.1 (Shannon entropy) Shannon Entropy of random variable X is defined as:

H(X) :=
∑

x∈supp(x)

p(x) log(
1

p(x)
), p(x) := Pr[X = x]

Definition 14.2 (Conditional entropy) The conditional Entropy of random variable Y given X is defined
as:

H(Y |X) :=
∑

x∈supp(x),y∈supp(y)

p(x, y) log

(
p(x)

p(x, y)

)
, p(x) := Pr[X = x], p(x, y) = Pr[X = x, Y = y]

Denote the Shannon entropy of a Bernoulli random variable X as H(p), where X equals to 1 with probability
p, and 0 with probability 1− p. Then H(p) = p log( 1

p ) + (1− p) log( 1
1−p ).

Theorem 14.3 (Chain rule of Shannon entropy)

H(X,Y ) = H(X) +H(Y |X)

Proof: Let p(x) = Pr[X = x], p(x, y) = Pr[X = x, Y = y] and p(y|x) = Pr[Y = y|X = x]. Then we have:

H(X,Y ) =
∑

p(x, y) log

(
1

p(x, y)

)
(by definition)

=
∑

p(x)p(y|x)

(
log

(
1

p(x)

)
+ log

(
1

p(y|x)

))
=
∑
x

p(x)
(∑

p(y|x)
)

log

(
1

p(x)

)
+
∑
x

p(x)

(∑
p(y|x)) log

(
1

p(y|x)

))
=H(X) +H(Y |X)

Corollary 14.4 (Chian rule of n random variables)

H(X1, ..., Xn) =

n∑
i=1

H(Xi|X<i)

where X<i = (X1, ..., Xi−1).

Proof: By induction on n.
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14.2 Existence of Codes

What kinds of codes exist? We will analyze binary codes. Informally, we want to show that

Theorem 14.5 (Informall) ∃(n, k, d)2 codes where k = Ω(n), d = Ω(n). That is, there exists binary codes
with constant relative rates and constant relative distances.

More formally,

Theorem 14.6 (Gilbert-Varshamov bound) ∀0 < δ < 1
2 , 0 < ε ≤ 1 − H(δ), there exists an (n, k, d)2

code where k
n ≥ 1−H(δ)− ε, dn ≥ δ.

Proof: We will use a greedy algorithm to show the existence of claimed binary codes:

Greedy Algorithm

• C ← ∅

• while ∃v ∈ {0, 1}n s.t. ∆(v, C) ≥ d, add v to C.

• Output C.

Definition 14.7 (Hamming Ball) ∀v ∈ {0, 1}n, r ≥ 0, define Ball(v, r) := {w|∆(v, w) ≤ r}.

Definition 14.8 (Volume of Ball) ∀n ∈ N, r ≤ n, define V ol(n, r) := |Ball(0n, r)|. Notice that ∀v ∈
{0, 1}n, |Ball(v, r)| = |Ball(0n, r)|.

Claim 14.9 ⋃
c∈C

Ball(c, d− 1) = {0, 1}n

Proof of:[14.9]

Suppose v ∈ {0, 1}n is not in this union, then ∆(v, C) ≥ d. The greedy algorithm would thus add v to C,
which indicates that v should then be included in this union. And we get a contradiction. �

Using claim 14.9 we know that V ol(n, d − 1) · |`| ≥ 2n, which means that V ol(n, d − 1) · 2k ≥ 2n. Now we
are left with the evaluation V ol(n, d− 1). We’ll show the following bound.

Claim 14.10 V ol(n, r) ≤ 2nH( r
n ),∀r ≤ n

2

Proof of:[14.10]

Let X = (X1, ..., Xn) be a random variable that is uniform over Ball(0n, r). Then the entropy of H(X) =
log(V ol(n, r)). Notice that

H(X1, ..., Xn) =

n∑
i=1

H(Xi|X<i)

≤
n∑
i=1

H(Xi) = nH(X1)

≤n ·H(
r

n
)
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The last step holds because n · E[X1] = E[
∑n
i=1Xi] ≤ r, which means that E[X1] = Pr[X1 = 1] ≤ r

n . Thus

V ol(n, r) ≤ 2nH( r
n ). �

Therefore we have 2n−k ≤ V ol(n, d − 1) ≤ 2n·H( d
n ), which means that 1 − k

n ≤ H( dn ). Thus we have
k
n ≥ 1−H(δ)− ε.

14.3 Unique Decoding of RS Codes

Definition 14.11 Define Poly≤w := univariate polynomials over Fq of degree less than or equal to w.

Then the message space of RS code is Poly≤k−1 : p(x) =
∑k−1
i=0 αix

i where (α0, ..., αk−1) ∈ Fkq . The encoding
is the evaluation of this polynomial on n distinct points: (p(β1), ..., p(βn)). Observe that this is a linear code.

Decoding question: let (f(β1), f(β2), ..., f(βn)) for some f : Fq 7→ Fq be a corrupted codeword. If the
number of errors is small, can we recover p?

Information theoretically, we can recover up to bd−12 c errors. The intuition is simple: if we have e, where

bd−12 c, then the corrupted codeword f might be within e distance from two codewords, which makes it
impossible for the decoder to uniquely decode from f . As in the figure, f is within distance e to p1 and p2
if e > bd−12 c:

Figure 14.1: ∆(p1, p2) = d, e > bd−12 c,∆(f, p1) ≤ e,∆(f, p2) ≤ e, so the decoder doesn’t know which one is
being modified.

Formally, the decoding problem is defined as:

Problem 14.12 given a function f : Fq 7→ Fq, and the promise that ∃p ∈ Poly≤k−1 s.t. the e
q =

Prx∈Fq
[f(x) 6= p(x)] ≤ bd−12 c

1
q , can we recover p(x) in poly(n) time?

14.3.1 Welch-Berlekamp Algorithm

For convenience, define T = {βi : f(β1) 6= p(βi)} to be the set of all corrupted positions. Then |T | ≤ e.

Definition 14.13 (Error-locator polynomial) E(x) is a polynomial over Fq such that E(βi) = 0 iff
βi ∈ T .

For example, the error locator polynomial can be defined as E(x) =
∏
βi∈T (x− βi).
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Observation 14.14
∀x ∈ Fq, E(x)p(x) = E(x)f(x) (∗)

As E(x) is of degree e and the degree of p(x) is smaller than or equal to k− 1, (∗) is a system of n equations
on e + k − 1 < n variables which are the unknown coefficients of E(x) and p(x). Thus, solving this system
would give us the error locator polynomial E(x) as well as the correct codeword p(x). However, (∗) is a
quadratic system, which is a NP-hard problem in general. We need to figure out an alternative way of
decoding in the next lecture.
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