CS 6815 Pseudorandomness and Combinatorial Constructions Fall 2019

Lecture 14: October 17
Lecturer: Eshan Chattopadhyay Scribe: Ke Wu

14.1 Preliminary and Notation

Definition 14.1 (Shannon entropy) Shannon Entropy of random variable X is defined as:

HX)= Y p(x)log<$>,p<x> = Pr[X = a]

zEsupp(x)

Definition 14.2 (Conditional entropy) The conditional Entropy of random variable Y given X is defined
as:

A= S plenton () pe) = PiX =l play) = PiX =¥ =]

z€supp(z),yEsupp(y)

Denote the Shannon entropy of a Bernoulli random variable X as H(p), where X equals to 1 with probability

p, and 0 with probability 1 — p. Then H(p) = plog(z%) +(1-p) log(lip).

Theorem 14.3 (Chain rule of Shannon entropy)
H(X,Y) = H(X) + H(Y|X)

Proof: Let p(x) = Pr[X = z],p(z,y) = Pr[X = 2,Y = y] and p(y|z) = Pr[Y = y|X = z]. Then we have:

H(X,Y)= Zp(x, y) log (p ! ) (by definition)

=S aptole) (1o (2 ) +1ox (o))
= rte) (S o) o (75) + oot (Lot o (7))

x x

|
Corollary 14.4 (Chian rule of n random variables)
H(X1, . X)) = zn: H(Xi|X<,)
i=1
where X<; = (X1, ..., Xi—1)-
Proof: By induction on n. [ |
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14.2 Existence of Codes

What kinds of codes exist? We will analyze binary codes. Informally, we want to show that

Theorem 14.5 (Informall) 3(n, k,d)s codes where k = Q(n),d = Q(n). That is, there exists binary codes
with constant relative rates and constant relative distances.

More formally,

Theorem 14.6 (Gilbert-Varshamov bound) V0 < § < 1,0 < e < 1 — H(J), there ezists an (n,k,d)>
code where % >1—H(9) —5,% > 9.

Proof: We will use a greedy algorithm to show the existence of claimed binary codes:

Greedy Algorithm

e C+ 10
e while Jv € {0,1}" s.t. A(v,C) > d, add v to C.
e Output C.

Definition 14.7 (Hamming Ball) Vv € {0,1}",r > 0, define Ball(v,r) := {w|A(v,w) < r}.

Definition 14.8 (Volume of Ball) Vn € N;r < n, define Vol(n,r) := |Ball(0",r)|. Notice that Yv €
{0,1}",|Ball(v,r)| = |Ball(0™,1)].

Claim 14.9
| Bali(c,d — 1) = {0,1}"
ceC

Proof of:|14.9]

Suppose v € {0,1}" is not in this union, then A(v,C) > d. The greedy algorithm would thus add v to C,
which indicates that v should then be included in this union. And we get a contradiction. [J

Using claim we know that Vol(n,d — 1) - [¢| > 2", which means that Vol(n,d — 1) - 28 > 2". Now we
are left with the evaluation Vol(n,d — 1). We’ll show the following bound.

Claim 14.10 Vol(n,r) < onH (%) v < z

Proof of:[14.10]

Let X = (X3,...,X,,) be a random variable that is uniform over Ball(0™,r). Then the entropy of H(X) =
log(Vol(n,r)). Notice that

H(Xy, ..., Xn) =Y H(Xi| X<i)
=1
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The last step holds because n - E[X;] = E[>."_; X;] < r, which means that E[X;] = Pr[X; = 1] < £. Thus

Vol(n,r) < onH(3). O

r
n

Therefore we have 2" % < Vol(n,d — 1) < 27H(D) | which means that 1 — £ < H(%) Thus we have

n

E>1-H(6) —e. ]

14.3 Unique Decoding of RS Codes

Definition 14.11 Define Poly<,, := univariate polynomials over I, of degree less than or equal to w.

Then the message space of RS code is Poly<j_; : p(z) = Y5} aa® where (g, ..., ap_1) € F%. The encoding
is the evaluation of this polynomial on n distinct points: (p(51),...,p(8,)). Observe that this is a linear code.

Decoding question: let (f(81), f(82), ..., f(Brn)) for some f : Fy — Fy be a corrupted codeword. If the
number of errors is small, can we recover p?

Information theoretically, we can recover up to L%J errors. The intuition is simple: if we have e, where

L%j, then the corrupted codeword f might be within e distance from two codewords, which makes it

impossible for the decoder to uniquely decode from f. As in the figure, f is within distance e to p; and ps
ife >[4

Figure 14.1: A(p1,p2) =d,e > L%J,A(f,pl) < e, A(f,p2) < e, so the decoder doesn’t know which one is
being modified.

Formally, the decoding problem is defined as:

Problem 14.12 given a function f : F, — F,, and the promise that 3p € Poly<y_1 s.t. the 2 =

Procr, [f(z) # p(z)] < |45 %, can we recover p(x) in poly(n) time?

14.3.1 Welch-Berlekamp Algorithm

For convenience, define T' = {f3; : f(1) # p(Bi)} to be the set of all corrupted positions. Then |T'| < e.

Definition 14.13 (Error-locator polynomial) E(z) is a polynomial over F, such that E(B;) = 0 iff
B, eT.

For example, the error locator polynomial can be defined as E(z) = []5, cp(z — i)
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Observation 14.14
Vo € Fy, E(x)p(z) = E(z) f(z) (%)

As E(x) is of degree e and the degree of p(z) is smaller than or equal to k — 1, (x) is a system of n equations
on e + k — 1 < n variables which are the unknown coefficients of E(x) and p(z). Thus, solving this system
would give us the error locator polynomial F(z) as well as the correct codeword p(z). However, (x) is a
quadratic system, which is a NP-hard problem in general. We need to figure out an alternative way of
decoding in the next lecture.
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