CS 6810: Theory of Computing Spring 2026

Lecture 4: February 3, 2026
Lecturer: Eshan Chattopadhyay Scribe: Amanda Wang

1 Introduction

We saw previously how to use diagonalization to show the existence of uncomputable functions, as
well as to prove hierarchy theorems for TIME and NTIME. Another interesting result involving
diagonalization is Ladner’s Theorem. In brief, Ladner’s says that if we believe P # NP, there exist
NP-intermediate problems between the classes of P and NP-complete problems.

Theorem 1.1 (Ladner’s Theorem [Lad75]). Suppose that P # NP. Then there exists a language
L € NP\ P that is not NP-complete.

The proof idea goes as follows. We construct a variant of SAT which we call SAT g consisting
of satisfiable boolean formulae padded with a string of 1’s. For each formula 1, the length of the
padding will depend on n = |¢)| and some polytime computable function H(n). H is cleverly chosen
so that we have Q(poly(n)) length padding. In particular, we pick H such that:

o If any TM M = M, claims to solve SAT j; efficiently, the padding length must be polynomial
in n for any sufficiently large input . Thus, SAT is just SAT with polynomial padding
= SATy ¢ P unless P = NP.

e Our choice of H implies a superpolynomial amount of padding. Then any polytime reduction
from length n instances of SAT to poly(n)-length instances of SAT gy implicitly gives a reduc-
tion from length n to length o(n) SAT instances. But iteratively applying this reduction until
we get a size O(1) instance would let us solve SAT in polytime, which contradicts P # NP.
So no such polytime reduction exists, and SAT iy cannot be NP-complete.

See Arora & Barak (Section 3.4, [AB09]) for more details.

Where did we use diagonalization in this proof? From the first condition, we can intuit that M;
must appear somewhere in our definition of H, but it’s clear that this construction is not quite as
straightforward as the one we used to prove the TIME-hierarchy theorem. In general, we’ll think
of diagonalization as any technique which only uses the following key facts about TM’s:

I. The existence of representations of TM’s as strings that we can enumerate over, and
II. The existence of a Universal TM that can simulate other TM’s with minimal overhead.

Given our earlier success with using diagonalization for structural results, one might ask the fol-
lowing question: Can we settle P vs. NP using just diagonalization? Throughout the rest
of this lecture, we’ll show that the answer to this question is no—using diagonalization!

Note: There are other barriers we can show; e.g., that natural proofs [RR97] and algebrization
[AW09] are also provably insufficient. These could be good topics to explore for the final project!

Lecture 4: February 3, 2026 2

2 Oracle TMs

We begin by defining oracle Turing machines, which will be key toward showing limitations of
diagonalization.

Definition 2.1 (Oracle Turing machines). An oracle TM M© is a multitape TM with oracle access
to O C {0,1}*, through a special oracle tape and additional states {qquerys Qyes, Gno}. Whenever M
transitions to Qquery, 1t queries O on input y, and then transitions in one time step to either qyes if

y €O orqp ify ¢ 0.

The mental model here is that an oracle TM captures computability in a world where the
language O is cheaply computable. For instance, the complexity class P© is the collection of
all languages decidable by M€, where M is a deterministic TM which runs in polynomial time.
Similarly, we can define NP as the class of languages decidable by M© for nondeterministic M.

Let’s see some concrete examples. Say we pick any language L € P. The classes PX and NP”
are exactly P and NP, since oracle access to L doesn’t buy us any additional computational power.
To give another example, co-NP C P3SAT since we can just run the oracle and negate its output.
As a reminder, co-INP is just the complement of NP, meaning that L € co-NP iff L € NP. In
upcoming lectures, we’ll see how to use oracle TMs to define the polynomial hierarchy.

3 Limitations of Diagonalization

With these definitions in hand, we are now ready to state the main theorem.

Theorem 3.1 (Baker, Gill, Solovay [BGST75]). There exists oracles A and B such that P4 = NP4
and PB £ NP5,

One interpretation of this result is that A is a such a powerful oracle that if the class of
deterministic polynomial-time machines is given access to A, then it can gain no additional power
from nondeterminism. On the other hand, B is a much weaker oracle; even with access to B,
deterministic polytime machines still can’t do everything that nondeterministic polytime machines
can do. This suffices to show a barrier for using diagonalization to settle P vs. NP, since both
facts I and IT hold for any oracle TM. Therefore, any proof using only diagonalization must hold
given both oracle access to A and oracle access to B. Such proofs are said to relativize, meaning the
proof holds relative to any oracle. As such, this theorem actually yields a slightly stronger result,
which is a barrier for any technique which relativizes (including diagonalization). In the next two
sections, we’ll see how to construct the oracles A and B.

3.1 PA=NP4
Define the class EXP = U.>oDTIME(2"") and the oracle
A={(|M],z,1") : M accepts x within 2" steps.}

Observe that A € EXP and P4 C NP4, We'll show that P4 = NP4 = EXP by sandwiching
EXP C P4 and NP4 C EXP.

Claim 3.2. EXP C P4,

Proof. Suppose L € EXP. Then there exists some TM M that runs in 2" time and decides L.
On input z, query (| M |, z, 1‘”6'6) € A in one step. Output x € L iff the oracle outputs yes. Thus,
L is also in PA. O

Lecture 4: February 3, 2026 3

Claim 3.3. NP4 C EXP.

Proof. First observe that NP C EXP, since we can traverse all computation paths in exponential
time to check if any path accepts. Now, consider any nondeterministic polytime machine M4
with oracle access to A. Such a machine may query A at any point along any of its computation
paths. But it can only make exponentially many queries in total over all computation paths,
and each query can only be polynomial in size. Since A € EXP, we can simulate each query in
exponential time. We can therefore handle exponentially many such queries in exponential time,
so NP4 C EXP. O

Thus, we showed the chain EXP C PA C NP4 C EXP — P4 = NP4,

3.2 PP +£NP?

Given any language L C {0,1}*, we can define its unary counterpart as
Up={1":3y e {0,1}" s.t. y € L}.

Observe that for any L, U, € NP since y is a polytime verifiable certificate for 1" € Uy, given
oracle access to L. The rest of this section is devoted to carefully constructing a language B such
that the corresponding unary language Up ¢ PP. Combining the previous observation with the
following construction suffices to show that P? C NP5,

Let My, Ms, ..., M;,... be an enumeration of deterministic TM’s. Our construction of B takes
place over countably many stages: in each stage ¢, we irrevocably decide membership in B for
finitely many strings. The objective is to decide membership in such a manner that the oracle
™ MiB must decide Up incorrectly on some input 1. Therefore, since every deterministic TM
is represented by some M; in our enumeration, we conclude that no deterministic TM correctly
computes U, and Up ¢ P5.

Consider some stage i. Let n; be the smallest number such that every string y of length n; is
still undecided. Such a n; must exist, since we have only decided membership for finitely many
strings. We now simulate MZ»B on 1™ for 2" /10 steps. Note that this is more steps than we strictly
need for showing Up & PB, but it makes the analysis clean. Recall from the definition of Up that
MZ-B should accept 1" iff some string y € {0,1}™ is in B. Roughly, what we’ll show is that since
none of the strings in {0, 1}" were decided prior to this stage, we can decide membership for strings
in {0,1}" so that M must be incorrect on 17.

Of course, there’s the somewhat tricky matter of simulating oracle access to a language B which
we are actively constructing. It turns out that this is actually not an issue, since we can answer
these queries in a consistent manner that defers the question “1™ € Ug?” until after the simulation
is complete. In particular, whenever the machine queries the oracle B on an undecided string y, we
always answer y € B. Otherwise, if y was decided in an earlier stage, we just answer consistently.

Suppose the simulation halts within 2" /10 steps and accepts. Recall that for any length n;
oracle query made during the simulation, we answered y ¢ B. We can now ensure 1™ ¢ Up by
deciding y ¢ B for all remaining strings of length n;.

Suppose instead that the simulation halts within 2™ /10 steps and rejects. Notice that we could
have made at most 2™ /10 oracle queries during that time, and no strings of length n; were decided
before this stage, so there must exist some fraction of length n; strings which have not yet been
decided. We can now decide y € B for these remaining strings, ensuring that 1™ € Ug.

Thus, whenever the simulation halts, we can decide membership for all unqueried strings in
{0,1}™ such that MZB must compute Up incorrectly on input 1. If the simulation doesn’t halt

Lecture 4: February 3, 2026 4

within 2™ /10 steps, we conclude that MiB fails to compute Up in polynomial time. Finally, for all
remaining undecided strings which are no longer than the longest string queried thus far, we can
arbitrarily decide their membership in B before moving on to the next stage.

There is a subtle nuance with this proof as stated: we seem to be making asymptotic claims
from only finite-length instances. More concretely, we can’t assert that a machine MP doesn’t
compute Up in polytime just because it fails to halt within 2" /10 steps on some input of length
n. Indeed, for any fixed n, we could always pick some constants ¢ and d such that ¢ - n¢ > 27 /10.
However, recall that each Turing machine has M infinitely many string representations. Thus, if
every string representation M; of M fails to halt on its input 1" within 2™ /10 steps, then we can
safely conclude that M runs in superpolynomial time. Of course, if any string representation M;
of M does halt within 2™ /10 steps, then our construction guarantees that M computes Up(1™)
incorrectly, so the proof holds.

References

[BGS75] Theodore Baker, John Gill, and Robert Solovay. “Relativizations of the P =7 NP ques-
tion.” In: SIAM Journal on Computing 4.4 (Dec. 1975), pp. 431-442. por: 10.1137/
0204037.

[Lad75] Richard E. Ladner. “On the Structure of Polynomial Time Reducibility”. In: J. ACM
22.1 (Jan. 1975), pp. 155-171. 1sSN: 0004-5411. poI: 10.1145/321864 .321877. URL:
https://doi.org/10.1145/321864.321877.

[RR97] Alexander A. Razborov and Steven Rudich. “Natural proofs.” In: Journal of Computer
and System Sciences 55.1 (Aug. 1997), pp. 24-35.

[AW09] Scott Aaronson and Avi Wigderson. “Algebrization: A New Barrier in Complexity The-
ory”. In: ACM Trans. Comput. Theory 1.1 (Feb. 2009). 1SSN: 1942-3454. DO1: 10.1145/
1490270.1490272. URL: https://doi.org/10.1145/1490270.1490272

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. 1st.
USA: Cambridge University Press, 2009. 1SBN: 0521424267.

https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272

	Introduction
	Oracle TMs
	Limitations of Diagonalization
	PA = NPA
	PB =NPB

