
CS 6810: Theory of Computing Spring 2026

Lecture 4: February 3, 2026

Lecturer: Eshan Chattopadhyay Scribe: Amanda Wang

1 Introduction

We saw previously how to use diagonalization to show the existence of uncomputable functions, as
well as to prove hierarchy theorems for TIME and NTIME. Another interesting result involving
diagonalization is Ladner’s Theorem. In brief, Ladner’s says that if we believe P ̸= NP, there exist
NP-intermediate problems between the classes of P and NP-complete problems.

Theorem 1.1 (Ladner’s Theorem [Lad75]). Suppose that P ̸= NP. Then there exists a language
L ∈ NP \P that is not NP-complete.

The proof idea goes as follows. We construct a variant of SAT which we call SATH consisting
of satisfiable boolean formulae padded with a string of 1’s. For each formula ψ, the length of the
padding will depend on n = |ψ| and some polytime computable function H(n). H is cleverly chosen
so that we have Ω(poly(n)) length padding. In particular, we pick H such that:

• If any TM M =Mi claims to solve SATH efficiently, the padding length must be polynomial
in n for any sufficiently large input ψ. Thus, SATH is just SAT with polynomial padding
=⇒ SATH ̸∈ P unless P = NP.

• Our choice of H implies a superpolynomial amount of padding. Then any polytime reduction
from length n instances of SAT to poly(n)-length instances of SATH implicitly gives a reduc-
tion from length n to length o(n) SAT instances. But iteratively applying this reduction until
we get a size O(1) instance would let us solve SAT in polytime, which contradicts P ̸= NP.
So no such polytime reduction exists, and SATH cannot be NP-complete.

See Arora & Barak (Section 3.4, [AB09]) for more details.

Where did we use diagonalization in this proof? From the first condition, we can intuit that Mi

must appear somewhere in our definition of H, but it’s clear that this construction is not quite as
straightforward as the one we used to prove the TIME-hierarchy theorem. In general, we’ll think
of diagonalization as any technique which only uses the following key facts about TM’s:

I. The existence of representations of TM’s as strings that we can enumerate over, and

II. The existence of a Universal TM that can simulate other TM’s with minimal overhead.

Given our earlier success with using diagonalization for structural results, one might ask the fol-
lowing question: Can we settle P vs. NP using just diagonalization? Throughout the rest
of this lecture, we’ll show that the answer to this question is no—using diagonalization!

Note: There are other barriers we can show; e.g., that natural proofs [RR97] and algebrization
[AW09] are also provably insufficient. These could be good topics to explore for the final project!

1

Lecture 4: February 3, 2026 2

2 Oracle TMs

We begin by defining oracle Turing machines, which will be key toward showing limitations of
diagonalization.

Definition 2.1 (Oracle Turing machines). An oracle TM MO is a multitape TM with oracle access
to O ⊆ {0, 1}∗, through a special oracle tape and additional states {qquery, qyes, qno}. Whenever M
transitions to qquery, it queries O on input y, and then transitions in one time step to either qyes if
y ∈ O or qno if y ̸∈ O.

The mental model here is that an oracle TM captures computability in a world where the
language O is cheaply computable. For instance, the complexity class PO is the collection of
all languages decidable by MO, where M is a deterministic TM which runs in polynomial time.
Similarly, we can define NPO as the class of languages decidable by MO for nondeterministic M .

Let’s see some concrete examples. Say we pick any language L ∈ P. The classes PL and NPL

are exactly P and NP, since oracle access to L doesn’t buy us any additional computational power.
To give another example, co-NP ⊆ P3-SAT, since we can just run the oracle and negate its output.
As a reminder, co-NP is just the complement of NP, meaning that L ∈ co-NP iff L ∈ NP. In
upcoming lectures, we’ll see how to use oracle TMs to define the polynomial hierarchy.

3 Limitations of Diagonalization

With these definitions in hand, we are now ready to state the main theorem.

Theorem 3.1 (Baker, Gill, Solovay [BGS75]). There exists oracles A and B such that PA = NPA

and PB ̸= NPB.

One interpretation of this result is that A is a such a powerful oracle that if the class of
deterministic polynomial-time machines is given access to A, then it can gain no additional power
from nondeterminism. On the other hand, B is a much weaker oracle; even with access to B,
deterministic polytime machines still can’t do everything that nondeterministic polytime machines
can do. This suffices to show a barrier for using diagonalization to settle P vs. NP, since both
facts I and II hold for any oracle TM. Therefore, any proof using only diagonalization must hold
given both oracle access to A and oracle access to B. Such proofs are said to relativize, meaning the
proof holds relative to any oracle. As such, this theorem actually yields a slightly stronger result,
which is a barrier for any technique which relativizes (including diagonalization). In the next two
sections, we’ll see how to construct the oracles A and B.

3.1 PA = NPA

Define the class EXP = ∪c≥0DTIME(2n
c
) and the oracle

A = {(⌊M⌋, x, 1n) :M accepts x within 2n steps.}

Observe that A ∈ EXP and PA ⊆ NPA. We’ll show that PA = NPA = EXP by sandwiching
EXP ⊆ PA and NPA ⊆ EXP.

Claim 3.2. EXP ⊆ PA.

Proof. Suppose L ∈ EXP. Then there exists some TM M that runs in 2n
c
time and decides L.

On input x, query (⌊M⌋, x, 1|x|c) ∈ A in one step. Output x ∈ L iff the oracle outputs yes. Thus,
L is also in PA.

Lecture 4: February 3, 2026 3

Claim 3.3. NPA ⊆ EXP.

Proof. First observe that NP ⊆ EXP, since we can traverse all computation paths in exponential
time to check if any path accepts. Now, consider any nondeterministic polytime machine MA

with oracle access to A. Such a machine may query A at any point along any of its computation
paths. But it can only make exponentially many queries in total over all computation paths,
and each query can only be polynomial in size. Since A ∈ EXP, we can simulate each query in
exponential time. We can therefore handle exponentially many such queries in exponential time,
so NPA ⊆ EXP.

Thus, we showed the chain EXP ⊆ PA ⊆ NPA ⊆ EXP =⇒ PA = NPA.

3.2 PB ̸= NPB

Given any language L ⊆ {0, 1}∗, we can define its unary counterpart as

UL = {1n : ∃y ∈ {0, 1}n s.t. y ∈ L}.

Observe that for any L, UL ∈ NPL since y is a polytime verifiable certificate for 1n ∈ UL, given
oracle access to L. The rest of this section is devoted to carefully constructing a language B such
that the corresponding unary language UB ̸∈ PB. Combining the previous observation with the
following construction suffices to show that PB ⊊ NPB.

Let M1,M2, . . . ,Mi, . . . be an enumeration of deterministic TM’s. Our construction of B takes
place over countably many stages: in each stage i, we irrevocably decide membership in B for
finitely many strings. The objective is to decide membership in such a manner that the oracle
TM MB

i must decide UB incorrectly on some input 1ni . Therefore, since every deterministic TM
is represented by some Mi in our enumeration, we conclude that no deterministic TM correctly
computes UB, and UB ̸∈ PB.

Consider some stage i. Let ni be the smallest number such that every string y of length ni is
still undecided. Such a ni must exist, since we have only decided membership for finitely many
strings. We now simulate MB

i on 1ni for 2ni/10 steps. Note that this is more steps than we strictly
need for showing UB ̸∈ PB, but it makes the analysis clean. Recall from the definition of UB that
MB

i should accept 1ni iff some string y ∈ {0, 1}ni is in B. Roughly, what we’ll show is that since
none of the strings in {0, 1}ni were decided prior to this stage, we can decide membership for strings
in {0, 1}ni so that MB

i must be incorrect on 1ni .
Of course, there’s the somewhat tricky matter of simulating oracle access to a language B which

we are actively constructing. It turns out that this is actually not an issue, since we can answer
these queries in a consistent manner that defers the question “1ni ∈ UB?” until after the simulation
is complete. In particular, whenever the machine queries the oracle B on an undecided string y, we
always answer y ̸∈ B. Otherwise, if y was decided in an earlier stage, we just answer consistently.

Suppose the simulation halts within 2ni/10 steps and accepts. Recall that for any length ni
oracle query made during the simulation, we answered y ̸∈ B. We can now ensure 1ni ̸∈ UB by
deciding y ̸∈ B for all remaining strings of length ni.

Suppose instead that the simulation halts within 2ni/10 steps and rejects. Notice that we could
have made at most 2ni/10 oracle queries during that time, and no strings of length ni were decided
before this stage, so there must exist some fraction of length ni strings which have not yet been
decided. We can now decide y ∈ B for these remaining strings, ensuring that 1ni ∈ UB.

Thus, whenever the simulation halts, we can decide membership for all unqueried strings in
{0, 1}ni such that MB

i must compute UB incorrectly on input 1ni . If the simulation doesn’t halt

Lecture 4: February 3, 2026 4

within 2ni/10 steps, we conclude that MB
i fails to compute UB in polynomial time. Finally, for all

remaining undecided strings which are no longer than the longest string queried thus far, we can
arbitrarily decide their membership in B before moving on to the next stage.

There is a subtle nuance with this proof as stated: we seem to be making asymptotic claims
from only finite-length instances. More concretely, we can’t assert that a machine MB doesn’t
compute UB in polytime just because it fails to halt within 2n/10 steps on some input of length
n. Indeed, for any fixed n, we could always pick some constants c and d such that c · nd > 2n/10.
However, recall that each Turing machine has M infinitely many string representations. Thus, if
every string representation Mi of M fails to halt on its input 1ni within 2ni/10 steps, then we can
safely conclude that M runs in superpolynomial time. Of course, if any string representation Mi

of M does halt within 2ni/10 steps, then our construction guarantees that M computes UB(1
ni)

incorrectly, so the proof holds.

References

[BGS75] Theodore Baker, John Gill, and Robert Solovay. “Relativizations of the P =? NP ques-
tion.” In: SIAM Journal on Computing 4.4 (Dec. 1975), pp. 431–442. doi: 10.1137/
0204037.

[Lad75] Richard E. Ladner. “On the Structure of Polynomial Time Reducibility”. In: J. ACM
22.1 (Jan. 1975), pp. 155–171. issn: 0004-5411. doi: 10.1145/321864.321877. url:
https://doi.org/10.1145/321864.321877.

[RR97] Alexander A. Razborov and Steven Rudich. “Natural proofs.” In: Journal of Computer
and System Sciences 55.1 (Aug. 1997), pp. 24–35.

[AW09] Scott Aaronson and Avi Wigderson. “Algebrization: A New Barrier in Complexity The-
ory”. In: ACM Trans. Comput. Theory 1.1 (Feb. 2009). issn: 1942-3454. doi: 10.1145/
1490270.1490272. url: https://doi.org/10.1145/1490270.1490272.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. 1st.
USA: Cambridge University Press, 2009. isbn: 0521424267.

https://doi.org/10.1137/0204037
https://doi.org/10.1137/0204037
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/321864.321877
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1145/1490270.1490272

	Introduction
	Oracle TMs
	Limitations of Diagonalization
	PA = NPA
	PB =NPB

