
COM S 6810 Theory of Computing March 24, 2009

Lecture 17: Arthur-Merlin games, Zero-knowledge proofs
Instructor: Rafael Pass Scribe: Jean-Baptiste Jeannin

In the previous lectures, we gave a definition of Arthur-Merlin games, proved that IP =
PSPACE, then that MA ⊆ AM , and that for any fixed integer k, AM [k] = AM where
AM = AM [2] by definition.

1 Perfect completeness for MA and AM

First recall that L ∈MA if there is a proof system for L that consists of the prover first
sending a message, and then the verifier tossing coins and applying a polynomial-time
predicate to the input, the prover’s message and the coins. If V is the verifier, m is the
message sent by the prover and r represent the coins tossed by the verifier, then an MA
protocol is such that:

• if x ∈ L, then ∃m, Prr(V (m, r) = 1) ≥ 2
3
,

• if x 6∈ L, then ∀m, Prr(V (m, r) = 1) ≤ 1
3
.

We have already seen that by running several proofs in parallel, the following alternate
definition of an MA protocol is equivalent: for any n,

• if x ∈ L, then ∃m, Prr(V (m, r) = 1) ≥ 1− 1
2n ,

• if x 6∈ L, then ∀m, Prr(V (m, r) = 1) ≤ 1
2n .

What we would like is to replace this small error in the completeness by a perfect com-
pleteness, thus getting the following definition of an MA with perfect completeness:

• if x ∈ L, then ∃m, Prr(V (m, r) = 1) = 1,

• if x 6∈ L, then ∀m, Prr(V (m, r) = 1) ≤ 1
2
.

Theorem 1 From an MA protocol for a language L we can construct an MA protocol
with perfect completeness.

Proof. Let us consider an MA protocol for a language L. Without loss of generality, by
running several proofs in parallel, and if l = |r|, we can assume that:
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• if x ∈ L, then ∃m, Prr(V (m, r)) ≥ 1− 1
4l

,

• if x 6∈ L, then ∀m, Prr(V (m, r)) ≤ 1
4l

.

Now we apply an idea similar to the proof that BPP ⊆ Σ2. Given an x and an m, let
Sm

x be the set of random coins r such that V (m, r) = 1 (i.e., accepts). Furthermore, let

z1, .., zl ∈ {0; 1}l. If Sm
x is small (i.e., of size ≤ 2l

4l
)), then

⋃
i∈[|1;l|] S

m
x ⊕ zi is small (i.e.,

of size ≤ 2l

4
); this happens when x ∈ L. On the other hand, if Sm

x is big (i.e., of size
≥ 2l

(
1− 1

4l

)
), then

⋃
i∈[|1;l|] S

m
x ⊕ zi = {0, 1}l; this happens when x 6∈ L. A more careful

proof was given in the proof that BPP ⊆ Σ2.

Now, let us define this new protocol for MA: the verifier (Arthur) sends to the prover
m, z1, ..., zl. Then he wants to check whether

⋃
i∈[|1;l|] S

m
x ⊕ zi is big. To do that, he picks

a random r ∈ {0; 1}l and accepts if and only if r ∈
⋃

i∈[|1;l|] S
m
x ⊕ zi, i.e., if and only if∨

i∈[|1;l|] V (m, r ⊕ zi) = 1.

Now we have proven that from any MA protocol we can get an MA protocol with perfect
completeness. What about AM protocols?

Theorem 2 From an AM protocol for a language L we can construct an AM protocol
with perfect completeness.

Proof. Given an MA protocol consisting of V sending a random string r to P , then P
answering with a message m, we know that we can amplify it such that:

• if x ∈ L, for a fraction at least 1− 1
4l

of r’s, there exists an accepting reply m,

• if x 6∈ L, for a fraction at most 1
4l

of r’s, there exists an accepting reply.

Now, let us look at this protocol: the prover P sends z1, ..., zl to V ; then V sends r ∈
{0; 1}l to P ; finally P sends an i and an m to V , and V checks that V (m, r⊕ zi) accepts.
Thus, given a non-perfect AM protocol, we have built an MAM = AM [3] protocol with
perfect completeness. But since we know that MAM = AM (i.e., AM [3] = AM), we
have in fact built an AM protocol with perfect completeness.

2 coSAT and AM

Theorem 3 If coSAT ⊆ AM then Σ2 ⊆ Π2 (and the PH collapses).
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Proof. We can first see that coSAT ∈ #P ⊆ PSPACE = IP , therefore it has an
interactive proof with a polynomial number of rounds.

Claim 1 AM ⊆ Π2

Given an AM protocol, we now know (from section 1 of this lecture) that we can obtain
an AM protocol with perfect completeness. Therefore, if we consider a protocol where
V sends r, then P answers with M :

• if x ∈ L, then ∀r,∃mr, P rr(V (mr, r) = 1) = 1. This can be reformulated as: if
x ∈ L, then ∀r,∃mr, V (mr, r) = 1;

• if x 6∈ L, then for many r’s, 6 ∃m, V (m, r) = 1. This implies that: if x 6∈ L, then
∃r,∀m, V (m, r) 6= 1.

Put together (and taking the contrapositive of the second), these two assertions mean
that x ∈ L if and only if ∀r,∃mr, V (mr, r) = 1, thus proving that AM ⊆ Σ2.

Claim 2 If coSAT ⊆ AM , then Σ2 ⊆ AM

If L ∈ Σ2, then there is an M such that x ∈ L if and only if ∃y,∀z,M(x, y, z). Now, if
we define L′ as: (x, y) ∈ L′ if and only if ∀z,M(x, y, z), we know that x ∈ L if and only
if ∃y, (x, y) ∈ L′. Clearly, L′ ∈ coNP , and because coSAT ⊆ AM , L′ ∈ AM . Now we
get a three-round interactive proof for L: first send y, then run the two-round interactive
proof for L′. We know that these three rounds can be collapsed into two rounds, thus
proving that L ∈ AM .

From the two claims, we easily get that Σ2 ⊆ Π2, and thus that the PH collapses.

Corollary 1 Unless the PH collapses, GraphIso is not NP -complete.

Proof. We have already shown a short interactive proof for GraphNonIso (lecture 14,
section 2). If GraphIso was NP -complete, GraphNonIso would be coNP -complete, thus
leading to coNP ⊆ AM , making the PH collapse by the previous theorem.

More generally, a widely used technique to show that something is not NP -complete is
to give a short interactive proof of its complement. Of course, this only holds if the PH
does not collapse.
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3 Introduction to Zero-knowledge proofs

In Computer Science, we are not interested in philosophical decisions of knowledge. We
take a more pragmatic point of view, stating that knowledge and knowing is the ability
to perform a task. Therefore something, e.g., a proof, is zero-knowledge if and only if it
does not convey any new knowledge.

Let us first take an example: you know that there has been a murder, you are a journalist
and want some more information in order to write an article about it. If you call the
police, the only thing they will tell you is “there has been a murder”, then hang up. This
is zero-knowledge, because you did not learn anything from this phone call. You could
have thought this phone call in your head without it ever happening. A more complicated
example would be to have the police hang up with probability 1

2
, and tell you “there has

been a murder” with probability 1
2
. Again, this is zero-knowledge.

What is a good example of a zero-knowledge proof? Let us look at the “Where’s Waldo”
classical game. In this game you have to find Waldo, whom you have a picture, in a big
crowd. How can I prove to you that Waldo is actually in the crowd without revealing
where he is? I could have a very big piece of paper with a little hole just the size of
Waldo’s head; I put the picture behind the piece of paper, putting Waldo behind the
hole. Now you are convinced that Waldo is in the picture, but you still do not know
where he is.

Another example is the game of the 7 differences: two pictures are very slightly differ-
ent, I would like to prove to you that they actually are different without revealing the
differences. I could give you the two pictures, you can shuffle them, then I have to decide
which is which. If we do that say 100 times and I always get it right, then you will be
convinced that the pictures are different.

17-4


