
Lecture � Algorithms and Their Complexity

This is a course on the design and analysis of algorithms intended for �rst�
year graduate students in computer science� Its purposes are mixed� on the
one hand� we wish to cover some fairly advanced topics in order to provide
a glimpse of current research for the bene�t of those who might wish to spe�
cialize in this area� on the other� we wish to introduce some core results and
techniques which will undoubtedly prove useful to those planning to specialize
in other areas�

We will assume that the student is familiar with the classical material nor�
mally taught in upper�level undergraduate courses in the design and analysis
of algorithms� In particular� we will assume familiarity with�

� sequential machine models� including Turing machines and random ac�
cess machines �RAMs�

� discrete mathematical structures� including graphs� trees� and dags� and
their common representations �adjacency lists and matrices�

� fundamental data structures� including lists� stacks� queues� arrays� bal�
anced trees

� fundamentals of asymptotic analysis� including O���� o���� and ���� no�
tation� and techniques for the solution of recurrences

� fundamental programming techniques� such as recursion� divide�and�
conquer� dynamic programming

� basic sorting and searching algorithms�

	



� Lecture � Algorithms and Their Complexity

These notions are covered in the early chapters of 
	� 	�� �

��
Familiarity with elementary algebra� number theory� and discrete proba�

bility theory will be helpful� In particular� we will be making occasional use of
the following concepts� linear independence� basis� determinant� eigenvalue�
polynomial� prime� modulus� Euclidean algorithm� greatest common divisor�
group� ring� �eld� random variable� expectation� conditional probability� con�
ditional expectation� Some excellent classical references are 
��� ��� 		��

The main emphasis will be on asymptotic worst�case complexity� This
measures how the worst�case time or space complexity of a problem grows
with the size of the input� We will also spend some time on probabilistic
algorithms and analysis�

��� Asymptotic Complexity

Let f and g be functions N � N � where N denotes the natural numbers
f
� �� � � �g� Formally�

� f is O�g� if

�c � N
�

� n f�n� � c � g�n� �

The notation
�

� means �for almost all� or �for all but �nitely many��
Intuitively� f grows no faster asymptotically than g to within a constant
multiple�

� f is o�g� if

�c � N
�

� n f�n� �
�

c
� g�n� �

This is a stronger statement� Intuitively� f grows strictly more slowly
than any arbitrarily small positive constant multiple of g� For example�
n��� is o���log n�

�

��

� f is ��g� if g is O�f�� In other words� f is ��g� if

�c � N
�

� n f�n� �
�

c
� g�n� �

� f is ��g� if f is both O�g� and ��g��

There is one cardinal rule�

Always use O and o for upper bounds and � for lower bounds� Never
use O for lower bounds�



Lecture � Algorithms and Their Complexity �

There is some disagreement about the de�nition of �� Some authors �such
as 
�	�� prefer the de�nition as given above� Others �such as 
�
��� prefer� f
is ��g� if g is not o�f�� in other words� f is ��g� if

�c � N
�

� n f�n� �
�

c
� g�n� �

�The notation
�

� means �there exist in�nitely many��� The latter is weaker and
presumably easier to establish� but the former gives sharper results� We won�t
get into the fray here� but just comment that neither de�nition precludes
algorithms from taking less than the stated bound on certain inputs� For
example� the assertion� �The running time of mergesort is ��n logn�� says
that there is a c such that for all but �nitely many n� there is some input
sequence of length n on which mergesort makes at least �

c
n logn comparisons�

There is nothing to prevent mergesort from taking less time on some other
input of length n�

The exact interpretation of statements involving O� o� and � depends on
assumptions about the underlying model of computation� how the input is
presented� how the size of the input is determined� and what constitutes a
single step of the computation� In practice� authors often do not bother to
write these down� For example� �The running time of mergesort is O�n logn��
means that there is a �xed constant c such that for any n elements drawn from
a totally ordered set� at most cn logn comparisons are needed to produce a
sorted array� Here nothing is counted in the running time except the number
of comparisons between individual elements� and each comparison is assumed
to take one step� other operations are ignored� Similarly� nothing is counted
in the input size except the number of elements� the size of each element
�whatever that may mean� is ignored�

It is important to be aware of these unstated assumptions and understand
how to make them explicit and formal when reading papers in the �eld� When
making such statements yourself� always have your underlying assumptions in
mind� Although many authors don�t bother� it is a good habit to state any
assumptions about the model of computation explicitly in any papers you
write�

The question of what assumptions are reasonable is more often than not a
matter of esthetics� You will become familiar with the standard models and
assumptions from reading the literature� beyond that� you must depend on
your own conscience�

��� Models of Computation

Our principal model of computation will be the unit�cost random access ma�
chine �RAM�� Other models� such as uniform circuits and PRAMs� will be
introduced when needed� The RAM model allows random access and the use



� Lecture � Algorithms and Their Complexity

of arrays� as well as unit�cost arithmetic and bit�vector operations on arbi�
trarily large integers� see 
	��

For graph algorithms� arithmetic is often unnecessary� Of the two main
representations of graphs� namely adjacency matrices and adjacency lists� the
former requires random access and ��n�� array storage� the latter� only linear
storage and no random access� �For graphs� linear means O�n � m�� where
n is the number of vertices of the graph and m is the number of edges�� The
most esthetically pure graph algorithms are those that use the adjacency list
representation and only manipulate pointers� To express such algorithms one
can formulate a very weak model of computation with primitive operators
equivalent to car� cdr� cons� eq� and nil of pure LISP� see also 
����

��� A Grain of Salt

No mathematical model can re�ect reality with perfect accuracy� Mathemat�
ical models are abstractions� as such� they are necessarily �awed�

For example� it is well known that it is possible to abuse the power of
unit�cost RAMs by encoding horrendously complicated computations in large
integers and solving intractible problems in polynomial time 
�
�� However�
this violates the unwritten rules of good taste� One possible preventative
measure is to use the log�cost model� but when used as intended� the unit�cost
model re�ects experimental observation more accurately for data of moderate
size �since multiplication really does take one unit of time�� besides making
the mathematical analysis a lot simpler�

Some theoreticians consider asymptotically optimal results as a kind of
Holy Grail� and pursue them with a relentless frenzy �present company not
necessarily excluded�� This often leads to contrived and arcane solutions that
may be superior by the measure of asymptotic complexity� but whose con�
stants are so large or whose implementation would be so cumbersome that
no improvement in technology would ever make them feasible� What is the
value of such results� Sometimes they give rise to new data structures or
new techniques of analysis that are useful over a range of problems� but more
often than not they are of strictly mathematical interest� Some practitioners
take this activity as an indictment of asymptotic complexity itself and refuse
to admit that asymptotics have anything at all to say of interest in practical
software engineering�

Nowhere is the argument more vociferous than in the theory of parallel
computation� There are those who argue that many of the models of compu�
tation in common use� such as uniform circuits and PRAMs� are so inaccurate
as to render theoretical results useless� We will return to this controversy later
on when we talk about parallel machine models�

Such extreme attitudes on either side are unfortunate and counterproduc�
tive� By now asymptotic complexity occupies an unshakable position in our
computer science consciousness� and has probably done more to guide us in



Lecture � Algorithms and Their Complexity �

improving technology in the design and analysis of algorithms than any other
mathematical abstraction� On the other hand� one should be aware of its lim�
itations and realize that an asymptotically optimal solution is not necessarily
the best one�

A good rule of thumb in the design and analysis of algorithms� as in life� is
to use common sense� exercise good taste� and always listen to your conscience�

��� Strassen�s Matrix Multiplication Algorithm

Probably the single most important technique in the design of asymptotically
fast algorithms is divide�and�conquer� Just to refresh our understanding of this
technique and the use of recurrences in the analysis of algorithms� let�s take a
look at Strassen�s classical algorithm for matrix multiplication and some of its
progeny� Some of these examples will also illustrate the questionable lengths
to which asymptotic analysis can sometimes be taken�

The usual method of matrix multiplication takes � multiplications and �
additions to multiply two �� � matrices� or in general O�n�� arithmetic oper�
ations to multiply two n�n matrices� However� the number of multiplications
can be reduced� Strassen 
��� published one such algorithm for multiplying
�� � matrices using only � multiplications and �� additions��

a b
c d

�
�

�
e f
g h

�
�

�
s� � s� 	 s� � s� s� � s�

s� � s� s� 	 s� � s� 	 s�

�

where

s� � �b	 d� � �g � h�

s� � �a� d� � �e� h�

s� � �a	 c� � �e� f�

s� � h � �a� b�

s� � a � �f 	 h�

s� � d � �g 	 e�

s� � e � �c� d� �

Assume for simplicity that n is a power of �� �This is not the last time you will
hear that�� Apply the �� � algorithm recursively on a pair of n� n matrices
by breaking each of them up into four square submatrices of size n

�
� n

�
��

A B
C D

�
�

�
E F
G H

�
�

�
S� � S� 	 S� � S� S� � S�

S� � S� S� 	 S� � S� 	 S�

�

where

S� � �B 	D� � �G�H�



� Lecture � Algorithms and Their Complexity

S� � �A�D� � �E �H�

S� � �A	 C� � �E � F �

S� � H � �A�B�

S� � A � �F 	H�

S� � D � �G	 E�

S� � E � �C �D� �

Everything is the same as in the � � � case� except now we are manipulat�
ing n

�
� n

�
matrices instead of scalars� �We have to be slightly cautious� since

matrix multiplication is not commutative�� Ultimately� how many scalar oper�
ations ���	� �� does this recursive algorithm perform in multiplying two n�n
matrices� We get the recurrence

T �n� � �T �
n

�
� � dn�

with solution

T �n� � �� �
�

	
d�nlog

�
� �O�n��

� O�nlog
�
��

� O�n��	�����

which is o�n��� Here d is a �xed constant� and dn� represents the time for the
matrix additions and subtractions�

This is already a signi�cant asymptotic improvement over the naive algo�
rithm� but can we do even better� In general� an algorithm that uses c multi�
plications to multiply two d�d matrices� used as the basis of such a recursive
algorithm� will yield an O�nlogd c� algorithm� To beat Strassen�s algorithm� we
must have c � dlog� �� For a 	 � 	 matrix� we need c � 	log� � � ���� � � �� but
the best known algorithm uses �	 multiplications�

In ����� Victor Pan 
�	� ��� showed how to multiply �
��
 matrices using
��	��
 multiplications� This gives an algorithm of approximately O�n���
������
The asymptotically best algorithm known to date� which is achieved by en�
tirely di�erent methods� is O�n��������� 
���� Every algorithm must be ��n���
since it has to look at all the entries of the matrices� no better lower bound is
known�



Lecture � Topological Sort and MST

A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure� Updating this extra information may slow down each individual
step� this additional cost is sometimes called overhead� However� it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm�

To illustrate� let�s look at topological sort� Let G � �V�E� be a directed
acyclic graph �dag�� The edge set E of the dag G induces a partial order �a
re�exive� antisymmetric� transitive binary relation� on V � which we denote
by E
 and de�ne by� uE
v if there exists a directed E�path of length 
 or
greater from u to v� The relation E
 is called the re�exive transitive closure
of E�

Proposition ��� Every partial order extends to a total order �a partial order
in which every pair of elements is comparable��

Proof� If R is a partial order that is not a total order� then there exist u� v
such that neither uRv nor vRu� Extend R by setting

R �� R � f�x� y� j xRu and vRyg �

The new R is a partial order extending the old R� and in addition now uRv�
Repeat until there are no more incomparable pairs� �

�



�� Lecture � Topological Sort and MST

In the case of a dag G � �V�E� with associated partial order E
� to say
that a total order � extends E
 is the same as saying that if uEv then u � v�
Such a total order is called a topological sort of the dag G� A naive O�n��
algorithm to �nd a topological sort can be obtained from the proof of the
above proposition�

Here is a faster algorithm� although still not optimal�

Algorithm ��� �Topological Sort II�

�� Start from any vertex and follow edges backwards until �nding a
vertex u with no incoming edges� Such a u must be encountered
eventually� since there are no cycles and the dag is �nite�

�� Make u the next vertex in the total order�

	� Delete u and all adjacent edges and go to step ��

Using the adjacency list representation� the running time of this algorithm is
O�n� steps per iteration for n iterations� or O�n���

The bottleneck here is step �� A minor modi�cation will allow us to perform
this step in constant time� Assume the adjacency list representation of the
graph associates with each vertex two separate lists� one for the incoming
edges and one for the outgoing edges� If the representation is not already of
this form� it can easily be put into this form in linear time� The algorithm
will maintain a queue of vertices with no incoming edges� This will reduce the
cost of �nding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue�

Algorithm ��� �Topological Sort III�

�� Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty�

�� Pick a vertex u o� the queue and make u the next vertex in the
total order�

	� Delete u and all outgoing edges �u� v�� For each such v� if its list
of incoming edges becomes empty� put v on the queue� Go to step
��

Step � takes time O�n�� Step � takes constant time� thus O�n� time over all
iterations� Step 	 takes time O�m� over all iterations� since each edge can be
deleted at most once� The overall time is O�m� n��

Later we will see a di�erent approach involving depth �rst search�



Lecture � Topological Sort and MST ��

��� Minimum Spanning Trees

Let G � �V�E� be a connected undirected graph�

De�nition ��� A forest in G is a subgraph F � �V�E �� with no cycles� Note
that F has the same vertex set as G� A spanning tree in G is a forest with
exactly one connected component� Given weights w � E � N �edges are
assigned weights over the natural numbers�� a minimum �weight� spanning
tree �MST� in G is a spanning tree T whose total weight �sum of the weights
of the edges in T � is minimum over all spanning trees� �

Lemma ��� Let F � �V�E� be an undirected graph� c the number of con�
nected components of F � m � jEj� and n � jV j� Then F has no cycles i�
c�m � n�

Proof�
��� By induction on m� If m � 
� then there are n vertices and each

forms a connected component� so c � n� If an edge is added without forming
a cycle� then it must join two components� Thus m is increased by � and c is
decreased by �� so the equation c �m � n is maintained�

��� Suppose that F has at least one cycle� Pick an arbitrary cycle and
remove an edge from that cycle� Then m decreases by �� but c and n remain
the same� Repeat until there are no more cycles� When done� the equation
c�m � n holds� by the preceding paragraph� but then it could not have held
originally� �

We use a greedy algorithm to produce a minimum weight spanning tree�
This algorithm is originally due to Kruskal 
����

Algorithm ��	 �Greedy Algorithm for MST�

�� Sort the edges by weight�

�� For each edge on the list in order of increasing weight� include that
edge in the spanning tree if it does not form a cycle with the edges
already taken� otherwise discard it�

The algorithm can be halted as soon as n	 � edges have been kept� since we
know we have a spanning tree by Lemma ����

Step � takes time O�m logm� � O�m logn� using any one of a number of
general sorting methods� but can be done faster in certain cases� for example
if the weights are small integers so that bucket sort can be used�

Later on� we will give an almost linear time implementation of step �� but
for now we will settle for O�n logn�� We will think of including an edge e in the
spanning tree as taking the union of two disjoint sets of vertices� namely the
vertices in the connected components of the two endpoints of e in the forest



�� Lecture � Topological Sort and MST

being built� We represent each connected component as a linked list� Each
list element points to the next element and has a back pointer to the head of
the list� Initially there are no edges� so we have n lists� each containing one
vertex� When a new edge �u� v� is encountered� we check whether it would
form a cycle� i�e� whether u and v are in the same connected component�
by comparing back pointers to see if u and v are on the same list� If not�
we add �u� v� to the spanning tree and take the union of the two connected
components by merging the two lists� Note that the lists are always disjoint�
so we don�t have to check for duplicates�

Checking whether u and v are in the same connected component takes
constant time� Each merge of two lists could take as much as linear time�
since we have to traverse one list and change the back pointers� and there
are n 	 � merges� this will give O�n�� if we are not careful� However� if we
maintain counters containing the size of each component and always merge
the smaller into the larger� then each vertex can have its back pointer changed
at most logn times� since each time the size of its component at least doubles�
If we charge the change of a back pointer to the vertex itself� then there are at
most logn changes per vertex� or at most n logn in all� Thus the total time
for all list merges is O�n logn��

��� The Blue and Red Rules

Here is a more general approach encompassing most of the known algorithms
for the MST problem� For details and references� see 
�

� Chapter ��� which
proves the correctness of the greedy algorithm as a special case of this more
general approach� In the next lecture� we will give an even more general
treatment�

Let G � �V�E� be an undirected connected graph with edge weights w �
E � N � Consider the following two rules for coloring the edges of G� which
Tarjan 
�

� calls the blue rule and the red rule�

Blue Rule
 Find a cut �a partition of V into two disjoint sets X and
V 	X� such that no blue edge crosses the cut� Pick an uncolored edge
of minimum weight between X and V 	X and color it blue�
Red Rule
 Find a cycle �a path in G starting and ending at the same
vertex� containing no red edge� Pick an uncolored edge of maximum
weight on that cycle and color it red�

The greedy algorithm is just a repeated application of a special case of the
blue rule� We will show next time�

Theorem ��� Starting with all edges uncolored� if the blue and red rules are
applied in arbitrary order until neither applies� then the �nal set of blue edges
forms a minimum spanning tree�



Lecture � Matroids and Independence

Before we prove the correctness of the blue and red rules for MST� let�s �rst
discuss an abstract combinatorial structure called a matroid� We will show
that the MST problem is a special case of the more general problem of �nd�
ing a minimum�weight maximal independent set in a matroid� We will then
generalize the blue and red rules to arbitrary matroids and prove their cor�
rectness in this more general setting� We will show that every matroid has a
dual matroid� and that the blue and red rules of a matroid are the red and
blue rules� respectively� of its dual� Thus� once we establish the correctness of
the blue rule� we get the red rule for free�

We will also show that a structure is a matroid if and only if the greedy
algorithm always produces a minimum�weight maximal independent set for
any weighting�

De�nition ��� A matroid is a pair �S� I� where S is a �nite set and I is a
family of subsets of S such that

�i� if J � I and I 
 J � then I � I�

�ii� if I� J � I and jIj � jJ j� then there exists an x � J 	 I such that
I � fxg � I�

The elements of I are called independent sets and the subsets of S not in I
are called dependent sets� �

This de�nition is supposed to capture the notion of independence in a
general way� Here are some examples�

�	



�� Lecture � Matroids and Independence

�� Let V be a vector space� let S be a �nite subset of V � and let I 
 �S be
the family of linearly independent subsets of S� This example justi�es
the term �independent��

�� Let A be a matrix over a �eld� let S be the set of rows of A� and let
I 
 �S be the family of linearly independent subsets of S�

	� Let G � �V�E� be a connected undirected graph� Let S � E and let I
be the set of forests in G� This example gives the MST problem of the
previous lecture�

�� Let G � �V�E� be a connected undirected graph� Let S � E and let
I be the set of subsets E � 
 E such that the graph �V�E 	 E �� is
connected�

�� Elements ��� � � � � �n of a �eld are said to be algebraically independent
over a sub�eld k if there is no nontrivial polynomial p�x�� � � � � xn� with
coe�cients in k such that p���� � � � � �n� � 
� Let S be a �nite set of
elements and let I be the set of subsets of S that are algebraically
independent over k�

De�nition ��� A cycle �or circuit� of a matroid �S� I� is a setwise minimal
�i�e�� minimal with respect to set inclusion� dependent set� A cut �or cocircuit�
of �S� I� is a setwise minimal subset of S intersecting all maximal independent
sets� �

The terms circuit and cocircuit are standard in matroid theory� but we
will continue to use cycle and cut to maintain the intuitive connection with
the special case of MST� However� be advised that cuts in graphs as de�ned in
the last lecture are unions of cuts as de�ned here� For example� in the graph

s

s

s

�
�
�
�

H
H
H
H

s

t

u

the set f�s� u�� �t� u�g forms a cut in the sense of MST� but not a cut in
the sense of the matroid� because it is not minimal� However� a moment�s
thought reveals that this di�erence is inconsequential as far as the blue rule
is concerned�

Let the elements of S be weighted� We wish to �nd a setwise maximal
independent set whose total weight is minimum among all setwise maximal
independent sets� In this more general setting� the blue and red rules become�

Blue Rule
 Find a cut with no blue element� Pick an uncolored ele�
ment of the cut of minimum weight and color it blue�
Red Rule
 Find a cycle with no red element� Pick an element of the
cycle of maximum weight and color it red�



Lecture � Matroids and Independence ��

��� Matroid Duality

As the astute reader has probably noticed by now� there is some kind of duality
afoot� The similarity between the blue and red rules is just too striking to be
mere coincidence�

De�nition ��� Let �S� I� be a matroid� The dual matroid of �S� I� is �S� I
��
where

I
 � fsubsets of S disjoint from some maximal element of Ig �

In other words� the maximal elements of I
 are the complements in S of the
maximal elements of I� �

The examples 	 and � above are duals� Note that I

 � I� Be careful� it
is not the case that a set is independent in a matroid i� it is dependent in its
dual� For example� except in trivial cases� � is independent in both matroids�

Theorem ���

�� Cuts in �S� I� are cycles in �S� I
��

	� The blue rule in �S� I� is the red rule in �S� I
� with the ordering of the
weights reversed�

��� Correctness of the Blue and Red Rules

Now we prove the correctness of the blue and red rules in arbitrary matroids�
A proof for the special case of MST can be found in Tarjan�s book 
�

�
Chapter ��� Lawler 
�
� states the blue and red rules for arbitrary matroids
but omits a proof of correctness�

De�nition ��� Let �S� I� be a matroid with dual �S� I
�� An acceptable
coloring is a pair of disjoint sets B � I �the blue elements� and R � I
 �the
red elements�� An acceptable coloring B�R is total if B �R � S� i�e� if B is a
maximal independent set and R is a maximal independent set in the dual� An
acceptable coloring B�� R� extends or is an extension of an acceptable coloring
B�R if B 
 B� and R 
 R�� �

Lemma ��	 Any acceptable coloring has a total acceptable extension�

Proof� Let B�R be an acceptable coloring� Let U
 be a maximal element
of I
 extending R� and let U � S 	 U
� Then U is a maximal element of
I disjoint from R� As long as jBj � jU j� select elements of U and add them
to B� maintaining independence� This is possible by axiom �ii� of matroids�
Let bB be the resulting set� Since all maximal independent sets have the same
cardinality �Exercise �a� Homework ��� bB is a maximal element of I containing
B and disjoint from R� The desired total extension is bB� S 	 bB� �



�� Lecture � Matroids and Independence

Lemma ��� A cut and a cycle cannot intersect in exactly one element�

Proof� Let C be a cut and D a cycle� Suppose that C � D � fxg� Then
D	fxg is independent and C	fxg is independent in the dual� Color D	fxg
blue and C	fxg red� by Lemma 	��� this coloring extends to a total acceptable
coloring� But depending on the color of x� either C is all red or D is all blue�
this is impossible in an acceptable coloring� since D is dependent and C is
dependent in the dual� �

Suppose B is independent and B�fxg is dependent� Then B�fxg contains
a minimal dependent subset or cycle C� called the fundamental cycle� of x and
B� The cycle C must contain x� because C 	 fxg is contained in B and is
therefore independent�

Lemma ��� �Exchange Lemma� Let B�R be a total acceptable coloring�

�i� Let x � R and let y lie on the fundamental cycle of x and B� If the
colors of x and y are exchanged� the resulting coloring is acceptable�

�ii� Let y � B and let x lie on the fundamental cut of y and R �the funda�
mental cut of y and R is the fundamental cycle of y and R in the dual
matroid�� If the colors of x and y are exchanged� the resulting coloring
is acceptable�

Proof� By duality� we need only prove �i�� Let C be the fundamental cycle
of x and B and let y lie on C� If y � x� there is nothing to prove� Otherwise
y � B� The set C	fyg is independent since C is minimal� Extend C	fyg by
adding elements of jBj as in the proof of Lemma 	�� until achieving a maximal
independent set B�� Then B� � �B 	 fyg� � fxg� and the total acceptable
coloring B�� S 	 B� is obtained from B�R by switching the colors of x and y�

�

A total acceptable coloringB�R is called optimal ifB is of minimumweight
among all maximal independent sets� equivalently� if R is of maximum weight
among all maximal independent sets in the dual matroid�

Lemma ��
 If an acceptable coloring has an optimal total extension before
execution of the blue or red rule� then so has the resulting coloring afterwards�

Proof� We prove the case of the blue rule� the red rule follows by duality�
Let B�R be an acceptable coloring with optimal total extension bB� bR� Let A
be a cut containing no blue elements� and let x be an uncolored element of
A of minimum weight� If x � bB� we are done� so assume that x � bR� Let C
be the fundamental cycle of x and bB� By Lemma 	��� A � C must contain

�We say �the� because it is unique �Exercise �b� Homework ��� although we do not need
to know this for our argument�



Lecture � Matroids and Independence ��

another element besides x� say y� Then y � bB� and y �� B because there are
no blue elements of A� By Lemma 	��� the colors of x and y in bB� bR can be
exchanged to obtain a total acceptable coloring bB�� bR� extending B � fxg� R�
Moreover� bB� is of minimum weight� because the weight of x is no more than
that of y� �

We also need to know

Lemma ���� If an acceptable coloring is not total� then either the blue or red
rule applies�

Proof� Let B�R be an acceptable coloring with uncolored element x� By
Lemma 	��� B�R has a total extension bB� bR� By duality� assume without loss
of generality that x � bB� Let C be the fundamental cut of x and bR� Since all
elements of C besides x are in bR� none of them are blue in B� Thus the blue
rule applies� �

Combining Lemmas 	�� and 	��
� we have

Theorem ���� If we start with an uncolored weighted matroid and apply the
blue or red rules in any order until neither applies� then the resulting coloring
is an optimal total acceptable coloring�

What is really going on here is that all the subsets of the maximal inde�
pendent sets of minimal weight form a submatroid of �S� I�� and the blue rule
gives a method for implementing axiom �ii� for this matroid� see Miscellaneous
Exercise ��

��� Matroids and the Greedy Algorithm

We have shown that if �S� I� is a matroid� then the greedy algorithm produces
a maximal independent set of minimum weight� Here we show the converse�
if �S� I� is not a matroid� then the greedy algorithm fails for some choice of
integer weights� Thus the abstract concept of matroid captures exactly when
the greedy algorithm works�

Theorem ���� ������ see also ����� A system �S� I� satisfying axiom �i� of
matroids is a matroid �i�e�� it satis�es �ii�� if and only if for all weight as�
signments w � S � N � the greedy algorithm gives a minimum�weight maximal
independent set�

Proof� The direction ��� has already been shown� For ���� let �S� I�
satisfy �i� but not �ii�� There must be A�B such that A�B � I� jAj � jBj�
but for no x � B 	 A is A � fxg � I�

Assume without loss of generality that B is a maximal independent set�
If it is not� we can add elements to B maintaining the independence of B� for



�� Lecture � Matroids and Independence

any element that we add to B that can also be added to A while preserving
the independence of A� we do so� This process never changes the fact that
jAj � jBj and for no x � B 	 A is A � fxg � I�

Now we assign weights w � S � N � Let a � jA 	 Bj and b � jB 	 Aj�
Then a � b� Let h be a huge number� h� a� b� �Actually h � b� will do��

Case � If A is a maximal independent set� assign

w�x� � a � � for x � B 	 A
w�x� � b � � for x � A	 B
w�x� � 
 for x � A � B
w�x� � h for x �� A � B �

Thus

w�A� � a�b � �� � ab � a

w�B� � b�a � �� � ab � b �

This weight assignment forces the greedy algorithm to choose B when in fact
A is a maximal independent set of smaller weight�

Case � If A is not a maximal independent set� assign

w�x� � 
 for x � A
w�x� � b for x � B 	 A
w�x� � h for x �� A � B �

All the elements of A will be chosen �rst� and then a huge element outside of
A � B must be chosen� since A is not maximal� Thus the minimum�weight
maximal independent set B was not chosen� �



Lecture � Depth�First and Breadth�First

Search

Depth��rst search �DFS� and breadth��rst search �BFS� are two of the most
useful subroutines in graph algorithms� They allow one to search a graph
in linear time and compile information about the graph� They di�er in that
the former uses a stack �LIFO� discipline and the latter uses a queue �FIFO�
discipline to choose the next edge to explore�

Undirected depth��rst search produces in linear time a numbering of the
vertices called the depth��rst numbering and a particular spanning tree called
the depth��rst spanning tree of each connected component� This is done as
follows� Choose an arbitrary vertex u� which will become the root of the tree�
Push all edges �u� v� � E onto the stack� Assign u the DFS number 
 and
set the DFS counter c to �� Now repeat the following activity until the stack
becomes empty� Let �x� y� be the top element of the stack� This is the next
edge to explore� The vertex x has a DFS number already �this is an invariant
of the loop�� If y has no DFS number� assign it the DFS number c� increment
c� push all edges �y� z� � E onto the stack� and make the �directed� edge �x� y�
a tree edge� Otherwise� if y has a DFS number already� just pop �x� y� o� the
stack�

The tree edges form a directed spanning tree of the connected component
of u rooted at u� It is a dag rooted at u� since tree edges �x� y� only go from
lower numbered vertices to higher numbered vertices� It is a tree� since no
vertex has indegree greater than one� this is because �x� y� becomes a tree
edge only if y has no DFS number� and thereafter y has a DFS number� It is

��



�� Lecture � Depth	First and Breadth	First Search

a spanning tree� since it is easily shown inductively that every vertex in the
connected component of u eventually receives a DFS number� This spanning
tree is called the depth��rst spanning tree�

We can repeat the whole process with a new arbitrarily chosen unvisited
vertex to search the other connected components�

The non�tree edges �x� y� are called back edges and are directed from higher
numbered to lower numbered vertices� When we draw a DFS tree� we usually
draw the root at the top� the tree edges pointing down �hence the term depth�
�rst�� and the back edges pointing up�

Back edges out of v can only go to ancestors of v in the DFS tree� There
cannot be a back edge to a nonancestor� since that edge would have been
explored earlier from the other direction and would have been a tree edge�

DFS takes time O�m� n� where n is the number of vertices and m is the
number of edges� since each edge is stacked at most once in each direction�
and each edge and vertex requires a constant amount of processing�

See 
	� ��� for an alternative treatment�

��� Biconnected Components

Let G � �V�E� be a connected undirected graph�

De�nition ��� A vertex v is an articulation point if its removal disconnects
the graph� �

De�nition ��� A connected graph is called biconnected if any pair of distinct
vertices u and v lie on a simple cycle �one with no repeated vertices�� �

Note that according to this de�nition� a graph with two vertices connected by
a single edge is biconnected �no one said anything about not repeating edges��

If G is not biconnected� we de�ne the biconnected components of G in terms
of an equivalence relation on edges�

De�nition ��� For e� e� � E� de�ne e � e� if e and e� lie on a simple cycle�
�

Lemma ��� The relation � is an equivalence relation �re�exive� symmetric�
and transitive��

Proof� Re�exivity e � e follows from the fact that the edge e and its two
endpoints constitute a simple cycle� The relation is symmetric� since e and
e� can be interchanged in the de�nition of �� The hard one is transitivity�
Suppose �u� v� � �u�� v�� and �u�� v�� � �u��� v���� Let c and c� be the two simple
cycles involved� respectively� Assume u� u�� v�� v occur in that order around c�
Let x be the �rst vertex on the segment of c from u to u� that also lies in c��
x must exist since u� � c�� at least� Let y be the �rst vertex on the segment of



Lecture � Depth	First and Breadth	First Search ��

c from v to v� that also lies in c�� y must exist since v� � c�� Also� x �� y since
c is simple� Let p be the path from x to y in c containing �u� v� and let p� be
the path from x to y in c� containing �u��� v���� Then p and p� intersect only in
x and y� and together form a simple cycle containing �u� v� and �u��� v���� �

De�nition ��� The equivalence classes of � are called biconnected compo�
nents� �

Lemma ��	 The vertex a is an articulation point i� a is contained in at least
two biconnected components�

Proof� Suppose the removal of a disconnects the graph� Then there exist
u and v adjacent to a such that every path from u to v goes through a� Then
the edges �u� a� and �a� v� cannot lie on a simple cycle� thus are in di�erent
biconnected components�

Conversely� suppose u and v are adjacent to a and �u� a� �� �a� v�� Then
all paths between u and v must go through a� Thus if a is removed� there is
no path between u and v� so G is disconnected� �

Below� when using the terms �descendant� and �ancestor� in a depth��rst
search tree� we will always consider a vertex u to be a descendant of itself and
an ancestor of itself� In other words� we take the descendant and ancestor
relations to be re�exive� If we want to exclude u� we do so explicitly by using
the terms �proper descendant� and �proper ancestor��

Lemma ��� Let �u� v� and �v� w� be two adjacent tree edges in a depth��rst
search tree of G� Then �u� v� � �v� w� if and only if there exists a back edge
from some descendant of w to some ancestor of u�

Proof�
��� If there exists a back edge from some descendant w� of w to some

ancestor u� of u� then �u� v� and �v� w� are edges in a simple cycle consisting
of the back edge �w�� u�� along with the path of tree edges from u� to w�� Thus
�u� v� � �v� w��

��� Suppose �u� v� � �v� w�� Then there must be a simple cycle containing
them� This cycle must contain the edges �u� v� and �v� w� in this order� since
it may only go through v once� Consider the subtree of the depth��rst tree
rooted at w� The simple cycle must contain a back edge �w�� u�� out of this
subtree� since it must get back to u eventually� �Before coming out� the path
inside the subtree can be quite complicated� since it can traverse tree and back
edges in either direction�don�t forget that the graph is undirected�� Then w�

is a descendant of w and u� is an ancestor of w�� Since u� is not in the subtree
rooted at w� it must be an ancestor of v� But it cannot be v because v cannot
be used twice on the cycle� Therefore u� must be an ancestor of u� �



�� Lecture � Depth	First and Breadth	First Search

The biconnected components can be found from a DFS tree as follows�
Assume the vertices are named by their DFS numbers� We compute a value
for each vertex v� called low�v�� which gives the DFS number of the lowest
numbered vertex x �i�e� the highest in the tree� such that there is a back edge
from some descendant of v to x� By Lemmas ��� and ���� a vertex u will be
an articulation point� and the biconnected component of the tree edge �u� v�
will lie entirely in the subtree rooted at u� if low�v� � u� We can inductively
compute low�v� as follows�

x �� minflow�w� j w is an immediate descendant of vg

y �� minfz j z is reachable by a back edge from vg

low�v� �� min�x� y� �

The values low�v� can be computed simultaneously with the construction of
the DFS tree in linear time� As soon as an articulation point u is discovered
with �u� v� a tree edge such that low�v� � u� the biconnected component
containing the edge �u� v� can be deleted from the graph� See 
	� ��� for more
details�

��� Directed DFS

The DFS procedure on directed graphs is similar to DFS on undirected graphs�
except that we only follow edges from sources to sinks� Four types of edges
can result�

� tree edges to a vertex not yet visited

� back edges to an ancestor

� forward edges to a descendant previously visited

� cross edges to a vertex previously visited that is neither an ancestor nor
a descendant�

There can be no cross edges to a higher numbered vertex� such an edge would
have been a tree edge� If we mark the vertex y when the tree edge �x� y� is
popped to indicate that the subtree below y has been completely explored�
we can recognize each of these four cases when we explore the edge �u� v� by
checking marks and comparing DFS numbers�

�u� v� is a if

tree edge DFS�v� does not exist
back edge DFS�v� � DFS�u� and v is not marked
forward edge DFS�v� � DFS�u�
cross edge DFS�v� � DFS�u� and v is marked



Lecture � Depth	First and Breadth	First Search ��

The directed DFS tree can be constructed in linear time� see 
	� ��� for details�
The �rst application of directed DFS is determining acyclicity�

Theorem ��� A directed graph is acyclic i� its DFS forest has no back edges�

Proof� If there is a back edge� the graph is surely cyclic� Conversely� if
there are no back edges� consider the postorder numbering of the DFS forest�
traverse the forest in depth��rst order� but number the vertices in the order
they are last seen� Then tree edges� forward edges� and cross edges all go from
higher numbered to lower numbered vertices� so there can be no cycles� �

��� Strong Components

De�nition ��
 Let G � �V�E� be a directed graph� For u� v � V � de�ne
u � v if u and v lie on a directed cycle in G� This is an equivalence relation�
and its equivalence classes are called strongly connected components or just
strong components� A graph G is said to be strongly connected if for any pair
of vertices u� v there is a directed cycle in G containing u and v� i�e�� if G has
only one strong component� �

The strong components of a directed graph can be computed in linear time
using directed depth��rst search� The algorithm is similar to the algorithm
for biconnected components in undirected graphs� see 
	� for details�

��� Strong Components and Partial Orders

Strong components are important in the representation of partial orders� Fi�
nite partial orders are often represented as the re�exive transitive closures E


of dags G � �V�E� �recall �u� v� � E
 i� there exists an E�path from u to
v of length 
 or greater�� If G is not acyclic� then the relation E
 does not
satisfy the antisymmetry law� and is thus not a partial order� However� it is
still re�exive and transitive� Such a relation is called a preorder or sometimes
a quasiorder�

Given an arbitrary preorder �P���� de�ne x � y if x � y and y � x�
This is an equivalence relation� and we can collapse its equivalence classes
into single points to get a partial order� This construction is called a quotient
construction� Formally� let 
x� denote the ��class of x and let P�� denote the
set of all such classes� i�e��


x� � fy j y � xg

P�� � f
x� j x � Pg �

The preorder � induces a preorder� also denoted �� on P�� in a natural
way� 
x� � 
y� if x � y in P � �The choice of x and y in their respective
equivalence classes doesn�t matter�� It is easily shown that the preorder � is



�� Lecture � Depth	First and Breadth	First Search

actually a partial order on P��� intuitively� by collapsing equivalence classes�
we identi�ed those elements that caused antisymmetry to fail�

Forming the strong components of a directed �not necessarily acyclic�
graph G � �V�E� allows us to perform this operation e�ectively on the
preorder �V�E
�� We form a quotient graph G�� by collapsing the strong
components of G into single vertices�


v� � fu j u � vg �the strong component of v�

V�� � f
v� j v � V g

E � � f�
u�� 
v�� j �u� v� � Eg

G�� � �V��� E �� �

It is not hard to show that G�� is acyclic� Moreover�

Theorem ���� The partial orders �V��� E
� and �V��� �E ��
� are isomor�
phic�

In other words� the partial order represented by the collapsed graph is the
same as the collapse of the preorder represented by the original graph�



Lecture � Shortest Paths and Transitive

Closure

��� Single�Source Shortest Paths

Let G � �V�E� be an undirected graph and let � be a function assigning
a nonnegative length to each edge� Extend � to domain V � V by de�ning
��v� v� � 
 and ��u� v� � � if �u� v� �� E� De�ne the length� of a path
p � e�e� � � � en to be ��p� �

P
n

i�� ��ei�� For u� v � V � de�ne the distance
d�u� v� from u to v to be the length of a shortest path from u to v� or � if
no such path exists� The single�source shortest path problem is to �nd� given
s � V � the value of d�s� u� for every other vertex u in the graph�

If the graph is unweighted �i�e�� all edge lengths are ��� we can solve the
problem in linear time using BFS� For the more general case� here is an algo�
rithm due to Dijkstra 
���� Later on we will give an O�m�n logn� implemen�
tation using Fibonacci heaps� The algorithm is a type of greedy algorithm� it
builds a set X vertex by vertex� always taking vertices closest to X�

�In this context� the terms �length� and �shortest� applied to a path refer to �� not the
number of edges in the path�

��



�� Lecture � Shortest Paths and Transitive Closure

Algorithm ��� �Dijkstra�s Algorithm�

X �� fsg�
D�s� �� 
�
for each u � V 	 fsg do

D�u� �� ��s� u��
while X �� V do

let u � V 	X such that D�u� is minimum�
X �� X � fug�
for each edge �u� v� with v � V 	X do

D�v� �� min�D�v�� D�u� � ��u� v��
end while

The �nal value of D�u� is d�s� u�� This algorithm can be proved correct by
showing that the following two invariants are maintained by the while loop�

� for any u� D�u� is the distance from s to u along a shortest path through
only vertices in X�

� for any u � X� v �� X� D�u� � D�v��

��� Re�exive Transitive Closure

Let E denote the adjacency matrix of the directed graph G � �V�E�� Using
Boolean matrix multiplication� the matrix E� has a � in position uv i� there
is a path of length exactly � from vertex u to vertex v� i�e�� i� there exists a
vertex w such that �u� w�� �w� v� � E� Similarly� one can prove by induction
on k that �Ek�uv � � i� there is a path of length exactly k from u to v�

The re�exive transitive closure of G is

E
 � I � E � E� � � � �

� I � E � E� � � � � � En��

� �I � E�n�� �

The in�nite join is equal to the �nite one because if there is a path connecting
u and v� then there is one of length at most n	 ��

Suppose that two n�n Boolean matrices can be multiplied in timeM�n��
Then E
 � �I � E�n�� can be calculated in time O�M�n� logn� by squaring
E logn times� We will show below how to calculate E
 in time O�M�n���
Conversely� if there is an algorithm to compute E
 in time T �n�� then M�n�
is O�T �n�� �under the reasonable assumption that M�	n� is O�M�n���� to
multiply A and B� place them strategically into a 	n� 	n matrix� then take
its re�exive transitive closure���� 
 A 



 
 B

 
 


���



�

��� I A AB

 I B

 
 I

��� �



Lecture � Shortest Paths and Transitive Closure ��

The product AB can be read o� from the upper right�hand block�
Here is a divide and conquer algorithm to �nd E
 in time M�n��

Algorithm ��� �Re�exive Transitive Closure�

�� Divide E into � submatrices A�B�C�D of size roughly n

�
� n

�
such

that A and D are square�

E �

�
A B
C D

�

�� Recursively compute D
� Compute

F � A�BD
C �

Recursively compute F
�

	� Set

E
 �

�
F
 F
BD


D
CF
 D
 �D
CF
BD


�
�

Essentially� we are partitioning the set of vertices into two disjoint sets U
and V � where A describes the edges from U to U � B describes edges from U
to V � C describes edges from V to U � and D describes edges from V to V �
We compute re�exive transitive closures on these sets recursively and use this
information to describe the re�exive transitive closure of E� Note that we
compute two re�exive transitive closures� a few matrix multiplications �whose
complexity is given by M� and a few matrix additions �whose complexity is
assumed to be quadratic� of matrices of roughly half the size of E� This gives
the recurrence

T �n� � �T �
n

�
� � cM�

n

�
� � d�

n

�
��

where c and d are constants� Under the quite reasonable assumption that
M��n� � �M�n�� the solution to this recurrence is O�M�n���

��� All�Pairs Shortest Paths

Let E denote the adjacency matrix of a directed graph with edge weights�
Replace the ��s in E by the edge weights and the 
�s by �� Apply Algorithm
��� to calculate E
� except use � instead of � and min instead of �� We will
show next time that this solves the all�pairs shortest path problem�


