Lecture 1 Algorithms and Their Complexity

This is a course on the design and analysis of algorithms intended for first-
year graduate students in computer science. Its purposes are mixed: on the
one hand, we wish to cover some fairly advanced topics in order to provide
a glimpse of current research for the benefit of those who might wish to spe-
cialize in this area; on the other, we wish to introduce some core results and
techniques which will undoubtedly prove useful to those planning to specialize
in other areas.

We will assume that the student is familiar with the classical material nor-
mally taught in upper-level undergraduate courses in the design and analysis
of algorithms. In particular, we will assume familiarity with:

sequential machine models, including Turing machines and random ac-
cess machines (RAMs)

discrete mathematical structures, including graphs, trees, and dags, and
their common representations (adjacency lists and matrices)

fundamental data structures, including lists, stacks, queues, arrays, bal-
anced trees

fundamentals of asymptotic analysis, including O(-), o(-), and Q(-) no-
tation, and techniques for the solution of recurrences

fundamental programming techniques, such as recursion, divide-and-
conquer, dynamic programming

basic sorting and searching algorithms.

4 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

These notions are covered in the early chapters of [3, 39, 100].

Familiarity with elementary algebra, number theory, and discrete proba-
bility theory will be helpful. In particular, we will be making occasional use of
the following concepts: linear independence, basis, determinant, eigenvalue,
polynomial, prime, modulus, Euclidean algorithm, greatest common divisor,
group, ring, field, random variable, expectation, conditional probability, con-
ditional expectation. Some excellent classical references are [69, 49, 33].

The main emphasis will be on asymptotic worst-case complexity. This
measures how the worst-case time or space complexity of a problem grows
with the size of the input. We will also spend some time on probabilistic
algorithms and analysis.

1.1 Asymptotic Complexity

Let f and g be functions N' — N, where N denotes the natural numbers
{0,1,...}. Formally,

. [isO(g) if
Jee N Ov?nf(n)gcg(n)

The notation i‘vc; means “for almost all” or “for all but finitely many”.
Intuitively, f grows no faster asymptotically than ¢ to within a constant
multiple.

e fiso(g)if

00 1
Vee N an(n)gz-g(n).

This is a stronger statement. Intuitively, f grows strictly more slowly
than any arbitrarily small positive constant multiple of g. For example,

n317 is 0(2(10g n)?))

o fisQg)if gis O(f). In other words, f is Q(g) if

JeeN Vnf(n)>

%-g(n)-

e fis O(g)if fis both O(g) and Q(g).

There is one cardinal rule:

Always use O and o for upper bounds and €2 for lower bounds. Never
use O for lower bounds.

LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY)

There is some disagreement about the definition of 2. Some authors (such
as [43]) prefer the definition as given above. Others (such as [108]) prefer: f
is Q(g) if ¢ is not o(f); in other words, f is Q(g) if

dce N Oﬁnf(n)>%g(n)

(The notation OET means “there exist infinitely many”.) The latter is weaker and
presumably easier to establish, but the former gives sharper results. We won’t
get into the fray here, but just comment that neither definition precludes
algorithms from taking less than the stated bound on certain inputs. For
example, the assertion, “The running time of mergesort is Q(nlogn)” says
that there is a ¢ such that for all but finitely many n, there is some input
sequence of length n on which mergesort makes at least %n log n comparisons.
There is nothing to prevent mergesort from taking less time on some other
input of length n.

The exact interpretation of statements involving O, o, and 2 depends on
assumptions about the underlying model of computation, how the input is
presented, how the size of the input is determined, and what constitutes a
single step of the computation. In practice, authors often do not bother to
write these down. For example, “The running time of mergesort is O(n logn)”
means that there is a fixed constant ¢ such that for any n elements drawn from
a totally ordered set, at most cnlogn comparisons are needed to produce a
sorted array. Here nothing is counted in the running time except the number
of comparisons between individual elements, and each comparison is assumed
to take one step; other operations are ignored. Similarly, nothing is counted
in the input size except the number of elements; the size of each element
(whatever that may mean) is ignored.

It is important to be aware of these unstated assumptions and understand
how to make them explicit and formal when reading papers in the field. When
making such statements yourself, always have your underlying assumptions in
mind. Although many authors don’t bother, it is a good habit to state any
assumptions about the model of computation explicitly in any papers you
write.

The question of what assumptions are reasonable is more often than not a
matter of esthetics. You will become familiar with the standard models and
assumptions from reading the literature; beyond that, you must depend on
your own conscience.

1.2 Models of Computation

Our principal model of computation will be the unit-cost random access ma-
chine (RAM). Other models, such as uniform circuits and PRAMs, will be
introduced when needed. The RAM model allows random access and the use

6 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

of arrays, as well as unit-cost arithmetic and bit-vector operations on arbi-
trarily large integers; see [3].

For graph algorithms, arithmetic is often unnecessary. Of the two main
representations of graphs, namely adjacency matrices and adjacency lists, the
former requires random access and (n?) array storage; the latter, only linear
storage and no random access. (For graphs, linear means O(n + m), where
n is the number of vertices of the graph and m is the number of edges.) The
most esthetically pure graph algorithms are those that use the adjacency list
representation and only manipulate pointers. To express such algorithms one
can formulate a very weak model of computation with primitive operators
equivalent to car, cdr, cons, eq, and nil of pure LISP; see also [99].

1.3 A Grain of Salt

No mathematical model can reflect reality with perfect accuracy. Mathemat-
ical models are abstractions; as such, they are necessarily flawed.

For example, it is well known that it is possible to abuse the power of
unit-cost RAMs by encoding horrendously complicated computations in large
integers and solving intractible problems in polynomial time [50]. However,
this violates the unwritten rules of good taste. One possible preventative
measure is to use the log-cost model; but when used as intended, the unit-cost
model reflects experimental observation more accurately for data of moderate
size (since multiplication really does take one unit of time), besides making
the mathematical analysis a lot simpler.

Some theoreticians consider asymptotically optimal results as a kind of
Holy Grail, and pursue them with a relentless frenzy (present company not
necessarily excluded). This often leads to contrived and arcane solutions that
may be superior by the measure of asymptotic complexity, but whose con-
stants are so large or whose implementation would be so cumbersome that
no improvement in technology would ever make them feasible. What is the
value of such results? Sometimes they give rise to new data structures or
new techniques of analysis that are useful over a range of problems, but more
often than not they are of strictly mathematical interest. Some practitioners
take this activity as an indictment of asymptotic complexity itself and refuse
to admit that asymptotics have anything at all to say of interest in practical
software engineering.

Nowhere is the argument more vociferous than in the theory of parallel
computation. There are those who argue that many of the models of compu-
tation in common use, such as uniform circuits and PRAMs, are so inaccurate
as to render theoretical results useless. We will return to this controversy later
on when we talk about parallel machine models.

Such extreme attitudes on either side are unfortunate and counterproduc-
tive. By now asymptotic complexity occupies an unshakable position in our
computer science consciousness, and has probably done more to guide us in

LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY 7

improving technology in the design and analysis of algorithms than any other
mathematical abstraction. On the other hand, one should be aware of its lim-
itations and realize that an asymptotically optimal solution is not necessarily
the best one.

A good rule of thumb in the design and analysis of algorithms, as in life, is
to use common sense, exercise good taste, and always listen to your conscience.

1.4 Strassen’s Matrix Multiplication Algorithm

Probably the single most important technique in the design of asymptotically
fast algorithms is divide-and-conquer. Just to refresh our understanding of this
technique and the use of recurrences in the analysis of algorithms, let’s take a
look at Strassen’s classical algorithm for matrix multiplication and some of its
progeny. Some of these examples will also illustrate the questionable lengths
to which asymptotic analysis can sometimes be taken.

The usual method of matrix multiplication takes 8 multiplications and 4
additions to multiply two 2 x 2 matrices, or in general O(n?) arithmetic oper-
ations to multiply two n x n matrices. However, the number of multiplications
can be reduced. Strassen [97] published one such algorithm for multiplying
2 X 2 matrices using only 7 multiplications and 18 additions:

la b]_[e f] _ [81+82—s4+86 S4 + S5

c d g h Sg + S7 S9 — S3 + S5 — S7
where
s = (b—d)-(g+h)
sy = (a+d)-(e+h)
s3 = (a—c)-(e+f
S4 = h (a+b)
s5 = a-(f—h)
s¢ = d-(g9—e)
s; = e-(c+d)

Assume for simplicity that n is a power of 2. (This is not the last time you will
hear that.) Apply the 2 x 2 algorithm recursively on a pair of n X n matrices
by breaking each of them up into four square submatrices of size 3 x 3:

A Bl [E F] _ [S+58—5+S5 Si+ S5
¢cpo||cgH| ™ S + Sr Sy — S3+ S5 — S

where

S, = (B=D)-(G+H)

8 LECTURE 1 ALGORITHMS AND THEIR COMPLEXITY

Sy = (A+D)-(E+H)
S3 = (A-C)-(E+F)
Sy = H-(A+ B)
Ss = A-(F—H)
S¢ = D-(G—-E)
S; = E-(C+D).

Everything is the same as in the 2 x 2 case, except now we are manipulat-
ing § x § matrices instead of scalars. (We have to be slightly cautious, since
matrix multiplication is not commutative.) Ultimately, how many scalar oper-
ations (+, —, -) does this recursive algorithm perform in multiplying two n x n
matrices? We get the recurrence

T(n) = 7T(g) + dn?
with solution

T(n) = (1+§d)nl°g27+0(n2)

— O(n10g2 7)
— O(n2'81"')

which is o(n3). Here d is a fixed constant, and dn? represents the time for the
matrix additions and subtractions.

This is already a significant asymptotic improvement over the naive algo-
rithm, but can we do even better? In general, an algorithm that uses ¢ multi-
plications to multiply two d x d matrices, used as the basis of such a recursive
algorithm, will yield an O(n!°8¢) algorithm. To beat Strassen’s algorithm, we
must have ¢ < d'°827. For a 3 x 3 matrix, we need ¢ < 3827 = 21.8..., but
the best known algorithm uses 23 multiplications.

In 1978, Victor Pan [83, 84] showed how to multiply 70 x 70 matrices using
143640 multiplications. This gives an algorithm of approximately O(n?75).
The asymptotically best algorithm known to date, which is achieved by en-
tirely different methods, is O(n*3) [25]. Every algorithm must be Q(n?),
since it has to look at all the entries of the matrices; no better lower bound is
known.

Lecture 2 Topological Sort and MST

A recurring theme in asymptotic analysis is that it is often possible to get
better asymptotic performance by maintaining extra information about the
structure. Updating this extra information may slow down each individual
step; this additional cost is sometimes called overhead. However, it is often
the case that a small amount of overhead yields dramatic improvements in the
asymptotic complexity of the algorithm.

To illustrate, let’s look at topological sort. Let G = (V, E) be a directed
acyclic graph (dag). The edge set E of the dag G induces a partial order (a
reflexive, antisymmetric, transitive binary relation) on V', which we denote
by E* and define by: uE™v if there exists a directed E-path of length 0 or
greater from u to v. The relation E* is called the reflezive transitive closure

of E.

Proposition 2.1 FEvery partial order extends to a total order (a partial order
in which every pair of elements is comparable).

Proof. If R is a partial order that is not a total order, then there exist u, v
such that neither uRv nor v Ru. Extend R by setting

R = RU{(z,y)|xRu and vRy} .

The new R is a partial order extending the old R, and in addition now uRwv.
Repeat until there are no more incomparable pairs. O

10 LECTURE 2 TOPOLOGICAL SORT AND MST

In the case of a dag G = (V, E) with associated partial order E*, to say
that a total order < extends E™ is the same as saying that if uEv then u < v.
Such a total order is called a topological sort of the dag G. A naive O(n?)
algorithm to find a topological sort can be obtained from the proof of the
above proposition.

Here is a faster algorithm, although still not optimal.

Algorithm 2.2 (Topological Sort IT)

1. Start from any vertex and follow edges backwards until finding a
vertex u with no incoming edges. Such a u must be encountered
eventually, since there are no cycles and the dag is finite.

2. Make u the next vertex in the total order.

3. Delete u and all adjacent edges and go to step 1.

Using the adjacency list representation, the running time of this algorithm is
O(n) steps per iteration for n iterations, or O(n?).

The bottleneck here is step 1. A minor modification will allow us to perform
this step in constant time. Assume the adjacency list representation of the
graph associates with each vertex two separate lists, one for the incoming
edges and one for the outgoing edges. If the representation is not already of
this form, it can easily be put into this form in linear time. The algorithm
will maintain a queue of vertices with no incoming edges. This will reduce the
cost of finding a vertex with no incoming edges to constant time at a slight
extra overhead for maintaining the queue.

Algorithm 2.3 (Topological Sort III)

1. Initialize the queue by traversing the graph and inserting each v
whose list of incoming edges is empty.

2. Pick a vertex u off the queue and make u the next vertex in the
total order.

3. Delete u and all outgoing edges (u,v). For each such v, if its list
of incoming edges becomes empty, put v on the queue. Go to step
2.

Step 1 takes time O(n). Step 2 takes constant time, thus O(n) time over all
iterations. Step 3 takes time O(m) over all iterations, since each edge can be
deleted at most once. The overall time is O(m + n).

Later we will see a different approach involving depth first search.

LECTURE 2 TOPOLOGICAL SORT AND MST 11

2.1 Minimum Spanning Trees

Let G = (V, E) be a connected undirected graph.

Definition 2.4 A forestin G is a subgraph F' = (V, E') with no cycles. Note
that F' has the same vertex set as G. A spanning tree in G is a forest with
exactly one connected component. Given weights w : E — N (edges are
assigned weights over the natural numbers), a minimum (weight) spanning
tree (MST) in G is a spanning tree 7" whose total weight (sum of the weights
of the edges in T') is minimum over all spanning trees. O

Lemma 2.5 Let ' = (V,E) be an undirected graph, ¢ the number of con-
nected components of F, m = |E|, and n = |V|. Then F has no cycles iff
c+m=n.

Proof.

(—) By induction on m. If m = 0, then there are n vertices and each
forms a connected component, so ¢ = n. If an edge is added without forming
a cycle, then it must join two components. Thus m is increased by 1 and c is
decreased by 1, so the equation ¢+ m = n is maintained.

(«—) Suppose that F' has at least one cycle. Pick an arbitrary cycle and
remove an edge from that cycle. Then m decreases by 1, but ¢ and n remain
the same. Repeat until there are no more cycles. When done, the equation
¢+ m = n holds, by the preceding paragraph; but then it could not have held
originally. a

We use a greedy algorithm to produce a minimum weight spanning tree.
This algorithm is originally due to Kruskal [66].

Algorithm 2.6 (Greedy Algorithm for MST)

1. Sort the edges by weight.

2. For each edge on the list in order of increasing weight, include that
edge in the spanning tree if it does not form a cycle with the edges
already taken; otherwise discard it.

The algorithm can be halted as soon as n — 1 edges have been kept, since we
know we have a spanning tree by Lemma 2.5.

Step 1 takes time O(mlogm) = O(mlogn) using any one of a number of
general sorting methods, but can be done faster in certain cases, for example
if the weights are small integers so that bucket sort can be used.

Later on, we will give an almost linear time implementation of step 2, but
for now we will settle for O(nlogn). We will think of including an edge e in the
spanning tree as taking the union of two disjoint sets of vertices, namely the
vertices in the connected components of the two endpoints of e in the forest

12 LECTURE 2 TOPOLOGICAL SORT AND MST

being built. We represent each connected component as a linked list. Each
list element points to the next element and has a back pointer to the head of
the list. Initially there are no edges, so we have n lists, each containing one
vertex. When a new edge (u,v) is encountered, we check whether it would
form a cycle, 7.e. whether v and v are in the same connected component,
by comparing back pointers to see if u and v are on the same list. If not,
we add (u,v) to the spanning tree and take the union of the two connected
components by merging the two lists. Note that the lists are always disjoint,
so we don’t have to check for duplicates.

Checking whether v and v are in the same connected component takes
constant time. Each merge of two lists could take as much as linear time,
since we have to traverse one list and change the back pointers, and there
are n — 1 merges; this will give O(n?) if we are not careful. However, if we
maintain counters containing the size of each component and always merge
the smaller into the larger, then each vertex can have its back pointer changed
at most logn times, since each time the size of its component at least doubles.
If we charge the change of a back pointer to the vertex itself, then there are at
most logn changes per vertex, or at most nlogn in all. Thus the total time
for all list merges is O(nlogn).

2.2 The Blue and Red Rules

Here is a more general approach encompassing most of the known algorithms
for the MST problem. For details and references, see [100, Chapter 6], which
proves the correctness of the greedy algorithm as a special case of this more
general approach. In the next lecture, we will give an even more general
treatment.

Let G = (V, E) be an undirected connected graph with edge weights w :
E — N. Consider the following two rules for coloring the edges of GG, which
Tarjan [100] calls the blue rule and the red rule:

Blue Rule: Find a cut (a partition of V' into two disjoint sets X and
V' — X)) such that no blue edge crosses the cut. Pick an uncolored edge
of minimum weight between X and V' — X and color it blue.

Red Rule: Find a cycle (a path in G starting and ending at the same
vertex) containing no red edge. Pick an uncolored edge of maximum
weight on that cycle and color it red.

The greedy algorithm is just a repeated application of a special case of the
blue rule. We will show next time:

Theorem 2.7 Starting with all edges uncolored, if the blue and red rules are
applied in arbitrary order until neither applies, then the final set of blue edges
forms a minimum spanning tree.

Lecture 3 Matroids and Independence

Before we prove the correctness of the blue and red rules for MST, let’s first
discuss an abstract combinatorial structure called a matroid. We will show
that the MST problem is a special case of the more general problem of find-
ing a minimum-weight maximal independent set in a matroid. We will then
generalize the blue and red rules to arbitrary matroids and prove their cor-
rectness in this more general setting. We will show that every matroid has a
dual matroid, and that the blue and red rules of a matroid are the red and
blue rules, respectively, of its dual. Thus, once we establish the correctness of
the blue rule, we get the red rule for free.

We will also show that a structure is a matroid if and only if the greedy
algorithm always produces a minimum-weight maximal independent set for
any weighting.

Definition 3.1 A matroid is a pair (S,Z) where S is a finite set and Z is a
family of subsets of S such that

(i) if J€Z and I C J, then I € T,

(i) if I,J € T and |I| < |J|, then there exists an x € J — I such that
ITu{z} el

The elements of Z are called independent sets and the subsets of S not in Z
are called dependent sets. O

This definition is supposed to capture the notion of independence in a
general way. Here are some examples:

13

14 LECTURE 3 MATROIDS AND INDEPENDENCE

1. Let V be a vector space, let S be a finite subset of V, and let Z C 2° be
the family of linearly independent subsets of S. This example justifies
the term “independent”.

2. Let A be a matrix over a field, let S be the set of rows of A, and let
Z C 25 be the family of linearly independent subsets of S.

3. Let G = (V, E) be a connected undirected graph. Let S = E and let Z
be the set of forests in G. This example gives the MST problem of the
previous lecture.

4. Let G = (V, E) be a connected undirected graph. Let S = E and let
Z be the set of subsets E' C E such that the graph (V,E — E') is

connected.
5. Elements aq,...,q, of a field are said to be algebraically independent
over a subfield k if there is no nontrivial polynomial p(z1,...,x,) with

coefficients in k such that p(aq,...,a,) = 0. Let S be a finite set of
elements and let Z be the set of subsets of S that are algebraically
independent over k.

Definition 3.2 A cycle (or circuit) of a matroid (S,Z) is a setwise minimal
(i.e., minimal with respect to set inclusion) dependent set. A cut (or cocircuit)
of (S,Z) is a setwise minimal subset of S intersecting all maximal independent
sets. O

The terms circuit and cocircuit are standard in matroid theory, but we
will continue to use cycle and cut to maintain the intuitive connection with
the special case of MST. However, be advised that cuts in graphs as defined in
the last lecture are unions of cuts as defined here. For example, in the graph

t

S

the set {(s,u), (t,u)} forms a cut in the sense of MST, but not a cut in
the sense of the matroid, because it is not minimal. However, a moment’s
thought reveals that this difference is inconsequential as far as the blue rule
is concerned.

Let the elements of S be weighted. We wish to find a setwise maximal
independent set whose total weight is minimum among all setwise maximal
independent sets. In this more general setting, the blue and red rules become:

Blue Rule: Find a cut with no blue element. Pick an uncolored ele-
ment of the cut of minimum weight and color it blue.

Red Rule: Find a cycle with no red element. Pick an element of the
cycle of maximum weight and color it red.

LECTURE 3 MATROIDS AND INDEPENDENCE 15

3.1 Matroid Duality

As the astute reader has probably noticed by now, there is some kind of duality
afoot. The similarity between the blue and red rules is just too striking to be
mere coincidence.

Definition 3.3 Let (S,Z) be a matroid. The dual matroid of (S,T)is (S,Z%),
where

T* = {subsets of S disjoint from some maximal element of Z} .

In other words, the maximal elements of Z* are the complements in S of the
maximal elements of Z. O

The examples 3 and 4 above are duals. Note that Z** = Z. Be careful: it
is not the case that a set is independent in a matroid iff it is dependent in its
dual. For example, except in trivial cases, () is independent in both matroids.

Theorem 3.4
1. Cuts in (S,I) are cycles in (S,T%).

2. The blue rule in (S,I) is the red rule in (S,Z*) with the ordering of the
weights reversed.

3.2 Correctness of the Blue and Red Rules

Now we prove the correctness of the blue and red rules in arbitrary matroids.
A proof for the special case of MST can be found in Tarjan’s book [100,
Chapter 6]; Lawler [70] states the blue and red rules for arbitrary matroids
but omits a proof of correctness.

Definition 3.5 Let (S,Z) be a matroid with dual (S,Z%). An acceptable
coloring is a pair of disjoint sets B € Z (the blue elements) and R € Z* (the
red elements). An acceptable coloring B, R is total if BUR = S, i.e. if B is a
maximal independent set and R is a maximal independent set in the dual. An

acceptable coloring B’ R’ extends or is an extension of an acceptable coloring
B,Rif B C B'and R C R O

Lemma 3.6 Any acceptable coloring has a total acceptable extension.

Proof. Let B, R be an acceptable coloring. Let U™ be a maximal element
of T* extending R, and let U = S — U*. Then U is a maximal element of
7 disjoint from R. As long as |B| < |U|, select elements of U and add them
to B, maintaining independence. This is possible by axiom (ii) of matroids.
Let B be the resulting set. Since all maximal independent sets have the same
cardinality (Exercise 1a, Homework 1), B is a maximal element of Z containing
B and disjoint from R. The desired total extension is B,S — B. a

16 LECTURE 3 MATROIDS AND INDEPENDENCE

Lemma 3.7 A cut and a cycle cannot intersect in exactly one element.

Proof. Let C be a cut and D a cycle. Suppose that C N D = {z}. Then
D —{z} is independent and C'— {z} is independent in the dual. Color D —{z}
blue and C'—{x} red; by Lemma 3.6, this coloring extends to a total acceptable
coloring. But depending on the color of z, either C' is all red or D is all blue;
this is impossible in an acceptable coloring, since D is dependent and C' is
dependent in the dual. O

Suppose B is independent and BU{x} is dependent. Then BU{z} contains
a minimal dependent subset or cycle C, called the fundamental cycle' of x and
B. The cycle C must contain z, because C' — {z} is contained in B and is
therefore independent.

Lemma 3.8 (Exchange Lemma) Let B, R be a total acceptable coloring.

(i) Let x € R and let y lie on the fundamental cycle of x and B. If the
colors of x and y are exchanged, the resulting coloring is acceptable.

(i) Let y € B and let x lie on the fundamental cut of y and R (the funda-
mental cut of y and R is the fundamental cycle of y and R in the dual
matroid). If the colors of x and y are exchanged, the resulting coloring
1s acceptable.

Proof. By duality, we need only prove (i). Let C be the fundamental cycle
of z and B and let y lie on C'. If y = z, there is nothing to prove. Otherwise
y € B. The set C'—{y} is independent since C'is minimal. Extend C'—{y} by
adding elements of | B| as in the proof of Lemma 3.6 until achieving a maximal
independent set B'. Then B’ = (B — {y}) U {z}, and the total acceptable
coloring B', S — B’ is obtained from B, R by switching the colors of = and .

a

A total acceptable coloring B, R is called optimal if B is of minimum weight
among all maximal independent sets; equivalently, if R is of maximum weight
among all maximal independent sets in the dual matroid.

Lemma 3.9 If an acceptable coloring has an optimal total extension before
execution of the blue or red rule, then so has the resulting coloring afterwards.

Proof. We prove the case of the blue rule; the red rule follows by duality.
Let B, R be an acceptable coloring with optimal total extension B , R. Let A
be a cut containing no blue elements, and let x be an uncolored element of
A of minimum weight. If x € E, we are done, so assume that = € R. Let C
be the fundamental cycle of x and B. By Lemma 3.7, AN C must contain

'We say “the” because it is unique (Exercise 1b, Homework 1), although we do not need
to know this for our argument.

LECTURE 3 MATROIDS AND INDEPENDENCE 17

another element besides x, say y. Then y € B, and y ¢ B because there are
no blue elements of A. By Lemma 3.8, the colors of x and y in B, R can be
exchanged to obtain a total acceptable coloring B’, R extending B U {z}, R.
Moreover, B’ is of minimum weight, because the weight of x is no more than
that of y. O

We also need to know

Lemma 3.10 If an acceptable coloring is not total, then either the blue or red
rule applies.

Proof. Let B, R be an acceptable coloring with uncolored element x. By
Lemma 3.6, B, R has a total extension l§, R. By duality, assume without loss
of generality that x € B. Let C be the fundamental cut of z and R. Since all
elements of C' besides x are in }A%, none of them are blue in B. Thus the blue
rule applies. O

Combining Lemmas 3.9 and 3.10, we have

Theorem 3.11 If we start with an uncolored weighted matroid and apply the
blue or red rules in any order until neither applies, then the resulting coloring
15 an optimal total acceptable coloring.

What is really going on here is that all the subsets of the maximal inde-
pendent sets of minimal weight form a submatroid of (S,Z), and the blue rule
gives a method for implementing axiom (ii) for this matroid; see Miscellaneous
Exercise 1.

3.3 Matroids and the Greedy Algorithm

We have shown that if (S,Z) is a matroid, then the greedy algorithm produces
a maximal independent set of minimum weight. Here we show the converse:
if (S,Z) is not a matroid, then the greedy algorithm fails for some choice of
integer weights. Thus the abstract concept of matroid captures exactly when
the greedy algorithm works.

Theorem 3.12 ([32]; see also [70]) A system (S,T) satisfying aziom (i) of
matroids is a matroid (i.e., it satisfies (ii)) if and only if for all weight as-
signments w : S — N, the greedy algorithm gives a minimum-weight maximal
independent set.

Proof. The direction (—) has already been shown. For («+), let (S,7)
satisfy (i) but not (ii). There must be A, B such that A,B € Z, |A| < |B|,
but fornox € B—Ais AU {z} € T.

Assume without loss of generality that B is a mazimal independent set.
If it is not, we can add elements to B maintaining the independence of B; for

18 LECTURE 3 MATROIDS AND INDEPENDENCE

any element that we add to B that can also be added to A while preserving
the independence of A, we do so. This process never changes the fact that
|A| < |B| and fornox € B—Ais AU{z} € T.

Now we assign weights w : S — N. Let a = |A — B| and b = |B — A|.
Then a < b. Let h be a huge number, h > a,b. (Actually h > b* will do.)

Case 1 If A is a maximal independent set, assign

w(x)=a+1 forxe B—A

w(x)=b+1 forzre A—B

w(x) =0 forr e ANB

w(z) =h forc ¢ AUB .
Thus

w(A) = a(b+1) = ab+a

w(B) = bla+1) = ab+b.

This weight assignment forces the greedy algorithm to choose B when in fact
A is a maximal independent set of smaller weight.

Case 2 If A is not a maximal independent set, assign

w(zx) =0 forzre A
w(zx)=b forre B—A
w(x)=h forx ¢ AUB .

All the elements of A will be chosen first, and then a huge element outside of
A U B must be chosen, since A is not maximal. Thus the minimum-weight
maximal independent set B was not chosen. O

Lecture 4 Depth-First and Breadth-First
Search

Depth-first search (DFS) and breadth-first search (BFS) are two of the most
useful subroutines in graph algorithms. They allow one to search a graph
in linear time and compile information about the graph. They differ in that
the former uses a stack (LIFO) discipline and the latter uses a queue (FIFO)
discipline to choose the next edge to explore.

Undirected depth-first search produces in linear time a numbering of the
vertices called the depth-first numbering and a particular spanning tree called
the depth-first spanning tree of each connected component. This is done as
follows. Choose an arbitrary vertex u, which will become the root of the tree.
Push all edges (u,v) € E onto the stack. Assign u the DFS number 0 and
set the DFS counter ¢ to 1. Now repeat the following activity until the stack
becomes empty. Let (z,y) be the top element of the stack. This is the next
edge to explore. The vertex = has a DFS number already (this is an invariant
of the loop). If y has no DFS number, assign it the DFS number ¢, increment
¢, push all edges (y, z) € E onto the stack, and make the (directed) edge (x,y)
a tree edge. Otherwise, if y has a DFS number already, just pop (z,y) off the
stack.

The tree edges form a directed spanning tree of the connected component
of u rooted at u. It is a dag rooted at u, since tree edges (z,y) only go from
lower numbered vertices to higher numbered vertices. It is a tree, since no
vertex has indegree greater than one; this is because (z,y) becomes a tree
edge only if y has no DFS number, and thereafter y has a DFS number. It is

19

20 LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH

a spanning tree, since it is easily shown inductively that every vertex in the
connected component of u eventually receives a DFS number. This spanning
tree is called the depth-first spanning tree.

We can repeat the whole process with a new arbitrarily chosen unvisited
vertex to search the other connected components.

The non-tree edges (x, y) are called back edges and are directed from higher
numbered to lower numbered vertices. When we draw a DFS tree, we usually
draw the root at the top, the tree edges pointing down (hence the term depth-
first), and the back edges pointing up.

Back edges out of v can only go to ancestors of v in the DFS tree. There
cannot be a back edge to a nonancestor, since that edge would have been
explored earlier from the other direction and would have been a tree edge.

DFS takes time O(m + n) where n is the number of vertices and m is the
number of edges, since each edge is stacked at most once in each direction,
and each edge and vertex requires a constant amount of processing.

See [3, 78] for an alternative treatment.

4.1 Biconnected Components

Let G = (V, E) be a connected undirected graph.

Definition 4.1 A vertex v is an articulation point if its removal disconnects
the graph. a

Definition 4.2 A connected graph is called biconnected if any pair of distinct
vertices u and v lie on a simple cycle (one with no repeated vertices). O

Note that according to this definition, a graph with two vertices connected by
a single edge is biconnected (no one said anything about not repeating edges).

If G is not biconnected, we define the biconnected components of G in terms
of an equivalence relation on edges:

Definition 4.3 For e,e’ € F, define e = ¢’ if e and €’ lie on a simple cycle.
a

Lemma 4.4 The relation = is an equivalence relation (reflexive, symmetric,
and transitive).

Proof. Reflexivity e = e follows from the fact that the edge e and its two
endpoints constitute a simple cycle. The relation is symmetric, since e and
¢/ can be interchanged in the definition of =. The hard one is transitivity.
Suppose (u,v) = (u',v") and (v/,v") = (u”,v"). Let ¢ and ¢ be the two simple
cycles involved, respectively. Assume u, u’,v’, v occur in that order around c.
Let x be the first vertex on the segment of ¢ from u to u’ that also lies in ¢;
x must exist since u' € ¢, at least. Let y be the first vertex on the segment of

LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH 21

¢ from v to v’ that also lies in ¢; y must exist since v' € ¢/. Also, = # y since
c is simple. Let p be the path from z to y in ¢ containing (u,v) and let p’ be
the path from z to y in ¢’ containing (u”,v"). Then p and p' intersect only in
z and y, and together form a simple cycle containing (u,v) and (u”,v"). O

Definition 4.5 The equivalence classes of = are called biconnected compo-
nents. O

Lemma 4.6 The vertex a is an articulation point iff a is contained in at least
two biconnected components.

Proof. Suppose the removal of a disconnects the graph. Then there exist
u and v adjacent to a such that every path from u to v goes through a. Then
the edges (u,a) and (a,v) cannot lie on a simple cycle, thus are in different
biconnected components.

Conversely, suppose u and v are adjacent to a and (u,a) #Z (a,v). Then
all paths between v and v must go through a. Thus if @ is removed, there is
no path between v and v, so G is disconnected. O

Below, when using the terms “descendant” and “ancestor” in a depth-first
search tree, we will always consider a vertex u to be a descendant of itself and
an ancestor of itself. In other words, we take the descendant and ancestor
relations to be reflexive. If we want to exclude u, we do so explicitly by using
the terms “proper descendant” and “proper ancestor”.

Lemma 4.7 Let (u,v) and (v,w) be two adjacent tree edges in a depth-first
search tree of G. Then (u,v) = (v,w) if and only if there exists a back edge
from some descendant of w to some ancestor of u.

Proof.

(—) If there exists a back edge from some descendant w' of w to some
ancestor v’ of u, then (u,v) and (v, w) are edges in a simple cycle consisting
of the back edge (w', u') along with the path of tree edges from u' to w’. Thus
(u,v) = (v, w).

(«) Suppose (u,v) = (v, w). Then there must be a simple cycle containing
them. This cycle must contain the edges (u,v) and (v, w) in this order, since
it may only go through v once. Consider the subtree of the depth-first tree
rooted at w. The simple cycle must contain a back edge (w',u') out of this
subtree, since it must get back to u eventually. (Before coming out, the path
inside the subtree can be quite complicated, since it can traverse tree and back
edges in either direction—don’t forget that the graph is undirected.) Then w’
is a descendant of w and v’ is an ancestor of w’. Since v’ is not in the subtree
rooted at w, it must be an ancestor of v. But it cannot be v because v cannot
be used twice on the cycle. Therefore v’ must be an ancestor of w. O

22 LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH

The biconnected components can be found from a DFS tree as follows.
Assume the vertices are named by their DFS numbers. We compute a value
for each vertex v, called low(v), which gives the DFS number of the lowest
numbered vertex z (i.e. the highest in the tree) such that there is a back edge
from some descendant of v to x. By Lemmas 4.6 and 4.7, a vertex u will be
an articulation point, and the biconnected component of the tree edge (u,v)
will lie entirely in the subtree rooted at u, if low(v) > u. We can inductively
compute low(v) as follows:

z = min{low(w) | w is an immediate descendant of v}
:= min{z | z is reachable by a back edge from v}

low(v) := min(z,y) .

The values low(v) can be computed simultaneously with the construction of
the DFS tree in linear time. As soon as an articulation point u is discovered
with (u,v) a tree edge such that low(v) > wu, the biconnected component
containing the edge (u,v) can be deleted from the graph. See [3, 78] for more
details.

4.2 Directed DFS

The DFS procedure on directed graphs is similar to DF'S on undirected graphs,
except that we only follow edges from sources to sinks. Four types of edges
can result:

e tree edges to a vertex not yet visited
e back edges to an ancestor
e forward edges to a descendant previously visited

e cross edges to a vertex previously visited that is neither an ancestor nor
a descendant.

There can be no cross edges to a higher numbered vertex; such an edge would
have been a tree edge. If we mark the vertex y when the tree edge (z,y) is
popped to indicate that the subtree below y has been completely explored,
we can recognize each of these four cases when we explore the edge (u,v) by
checking marks and comparing DFS numbers:

| (wv)isa | if |
tree edge DFS(v) does not exist

back edge DFS(v) < DFS(u) and v is not marked
forward edge | DFS(v) > DFS(u)

cross edge DFS(v) < DFS(u) and v is marked

—— e [— [—

LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH 23

The directed DFS tree can be constructed in linear time; see [3, 78] for details.
The first application of directed DFS is determining acyclicity:

Theorem 4.8 A directed graph is acyclic iff its DFS forest has no back edges.

Proof. 1If there is a back edge, the graph is surely cyclic. Conversely, if
there are no back edges, consider the postorder numbering of the DFS forest:
traverse the forest in depth-first order, but number the vertices in the order
they are last seen. Then tree edges, forward edges, and cross edges all go from
higher numbered to lower numbered vertices, so there can be no cycles. O

4.3 Strong Components

Definition 4.9 Let G = (V, E) be a directed graph. For u,v € V, define
u = v if u and v lie on a directed cycle in G. This is an equivalence relation,
and its equivalence classes are called strongly connected components or just
strong components. A graph G is said to be strongly connected if for any pair
of vertices u, v there is a directed cycle in G containing u and v; ¢.e., if G has
only one strong component. a

The strong components of a directed graph can be computed in linear time
using directed depth-first search. The algorithm is similar to the algorithm
for biconnected components in undirected graphs; see [3] for details.

4.4 Strong Components and Partial Orders

Strong components are important in the representation of partial orders. Fi-
nite partial orders are often represented as the reflexive transitive closures E™*
of dags G = (V, E) (recall (u,v) € E* iff there exists an E-path from u to
v of length 0 or greater). If G is not acyclic, then the relation E* does not
satisfy the antisymmetry law, and is thus not a partial order. However, it is
still reflexive and transitive. Such a relation is called a preorder or sometimes
a quasiorder.

Given an arbitrary preorder (P, <), define z =~ y if + < y and y =< =x.
This is an equivalence relation, and we can collapse its equivalence classes
into single points to get a partial order. This construction is called a quotient
construction. Formally, let [x] denote the ~-class of x and let P/~ denote the
set of all such classes; i.e.,

[z] = {yly~=}
P/~ = {[z]|z € P}.

The preorder < induces a preorder, also denoted <, on P/~ in a natural

way: [z] < [y] if x < y in P. (The choice of x and y in their respective
equivalence classes doesn’t matter.) It is easily shown that the preorder < is

24 LECTURE 4 DEPTH-FIRST AND BREADTH-FIRST SEARCH

actually a partial order on P/a; intuitively, by collapsing equivalence classes,
we identified those elements that caused antisymmetry to fail.

Forming the strong components of a directed (not necessarily acyclic)
graph G = (V, E) allows us to perform this operation effectively on the
preorder (V, E*). We form a quotient graph G/= by collapsing the strong
components of GG into single vertices:

[v] = {u]|u=wv} (the strong component of v)
Vi= = {[v]|veV}

E'" = {([lul,[v]) | (u,v) € E}
G/= = (V/=F).

It is not hard to show that G/= is acyclic. Moreover,

Theorem 4.10 The partial orders (V/=, E*) and (V/=,(E")*) are isomor-
phic.

In other words, the partial order represented by the collapsed graph is the
same as the collapse of the preorder represented by the original graph.

Lecture 5 Shortest Paths and Transitive
Closure

5.1 Single-Source Shortest Paths

Let G = (V,E) be an undirected graph and let ¢ be a function assigning
a nonnegative length to each edge. Extend ¢ to domain V x V' by defining
{(v,v) = 0 and (u,v) = oo if (u,v) € E. Define the length® of a path
p = e1ey...e, to be £(p) = Y, l(e;). For u,v € V, define the distance
d(u,v) from u to v to be the length of a shortest path from u to v, or oo if
no such path exists. The single-source shortest path problem is to find, given
s € V, the value of d(s,u) for every other vertex u in the graph.

If the graph is unweighted (i.e., all edge lengths are 1), we can solve the
problem in linear time using BFS. For the more general case, here is an algo-
rithm due to Dijkstra [28]. Later on we will give an O(m +nlogn) implemen-
tation using Fibonacci heaps. The algorithm is a type of greedy algorithm: it
builds a set X vertex by vertex, always taking vertices closest to X.

2In this context, the terms “length” and “shortest” applied to a path refer to ¢, not the
number of edges in the path.

25

26 LECTURE 5 SHORTEST PATHS AND TRANSITIVE CLOSURE

Algorithm 5.1 (Dijkstra’s Algorithm)

X = {sh

D(s) :=0;

for each u € V' — {s} do
D(u) := {(s,u);

while X # V do
let w € V — X such that D(u) is minimum;
X =X U{u};
for each edge (u,v) with v € V — X do
D(v) := min(D(v), D(u) + £(u,v))
end while

The final value of D(u) is d(s,u). This algorithm can be proved correct by
showing that the following two invariants are maintained by the while loop:

e for any u, D(u) is the distance from s to u along a shortest path through
only vertices in X;

o forany u € X, v ¢ X, D(u) < D(v).

5.2 Reflexive Transitive Closure

Let E denote the adjacency matrix of the directed graph G = (V, E). Using
Boolean matrix multiplication, the matrix E? has a 1 in position uwv iff there
is a path of length exactly 2 from vertex u to vertex v; i.e., iff there exists a
vertex w such that (u,w), (w,v) € E. Similarly, one can prove by induction
on k that (E*),, = 1 iff there is a path of length exactly k from u to v.
The reflexive transitive closure of G is
E* = IVEVE*V---
= IVEVE*V---vVE"!
(IvE)™!.

The infinite join is equal to the finite one because if there is a path connecting
u and v, then there is one of length at most n — 1.

Suppose that two n x n Boolean matrices can be multiplied in time M (n).
Then E* = (I V E)"! can be calculated in time O(M (n)logn) by squaring
E logn times. We will show below how to calculate E* in time O(M(n)).
Conversely, if there is an algorithm to compute E* in time T'(n), then M (n)
is O(T'(n)) (under the reasonable assumption that M (3n) is O(M(n))): to
multiply A and B, place them strategically into a 3n x 3n matrix, then take
its reflexive transitive closure:

0 A
0 0
0 0

*

0 I A AB
B = 0 I B
0 0 0 I

LECTURE 5 SHORTEST PATHS AND TRANSITIVE CLOSURE 27

The product AB can be read off from the upper right-hand block.
Here is a divide and conquer algorithm to find E* in time M (n).

Algorithm 5.2 (Reflexive Transitive Closure)

1. Divide E into 4 submatrices A, B, C, D of size roughly § x & such
that A and D are square.

- [t

2. Recursively compute D*. Compute
F = A+ BD*C.
Recursively compute F'™.
3. Set

F* | F*BD*

* o
BT = D*CF* ‘ D* + D*CF*BD*

Essentially, we are partitioning the set of vertices into two disjoint sets U
and V', where A describes the edges from U to U, B describes edges from U
to V, C describes edges from V to U, and D describes edges from V to V.
We compute reflexive transitive closures on these sets recursively and use this
information to describe the reflexive transitive closure of E. Note that we
compute two reflexive transitive closures, a few matrix multiplications (whose
complexity is given by M) and a few matrix additions (whose complexity is
assumed to be quadratic) of matrices of roughly half the size of E. This gives
the recurrence

T(n) = 27(3)+cM(5)+d(5)’

where ¢ and d are constants. Under the quite reasonable assumption that
M (2n) > 4M(n), the solution to this recurrence is O(M (n)).

5.3 All-Pairs Shortest Paths

Let E denote the adjacency matrix of a directed graph with edge weights.
Replace the 1’s in E by the edge weights and the 0’s by co. Apply Algorithm
5.2 to calculate E*, except use + instead of A and min instead of V. We will
show next time that this solves the all-pairs shortest path problem.

